Emergence and Reemergence of Vaccinia-Like Viruses: Global Scenario and Perspectives

Abstract

Among the members of the genus Orthopoxvirus (OPXV), vaccinia virus (VACV), the type species of the genus is a double-stranded DNA virus, belongs to the subfamily Chordopoxvirinae of the family Poxviridae. The causative agents of smallpox, VACV and Variola virus are mutually immunogenic and the type species of Orthopoxvirus, cause only mild complications in humans. Therefore, the VACV was used as a smallpox vaccine world over under mass immunization program promoted by World Health Organization, which lead to the variola eradication globally in 1979. Since then, no vaccination of human population has been carried out; however, vaccination has been continued for at-risk laboratory workers, military personnel and others working with recombinant VACV or other non-variola orthopoxviruses (OPXVs). There has now been a surge in the development of safer smallpox vaccines and understanding of the biology of VACV necessitating re-use of this vaccine in most vulnerable population, because of rise in bioterrorist threats globally. Also, globally there has been the emergence and re-emergence of vaccinia-like viruses (VLVs) in Brazil, buffalopox viruses in Egypt, Indonesia, India and its neighbouring countries like Nepal, Pakistan. Bioterrorism as well as emergence and re-emergence of the VLVs constitute a concern as 50 % of the population globally (40 % in USA) <30 years are unvaccinated and most vulnerable for smallpox reemergence. Thus, the search for new generation safer smallpox vaccine entails review of biology of VLVs in the smallpox-free world. In this review, we present occurrence of VLVs in the world with exhaustive discussion particularly on the emergence and re-emergence of these viruses in India and Brazil where VLVs are sufficiently studied.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3

References

  1. 1.

    Abrahao JS, Guedes MI, Trindade GS, Fonseca FG, Campos RK, Mota BF, Lobato ZI, Silva-Fernandes AT, Rodrigues GO, Lima LS, Ferreira PC, Bonjardim CA, Kroon EG. One more piece in the VACV ecological puzzle: Could peridomestic rodents be the link between wildlife and bovine vaccinia outbreaks in Brazil? PLoS ONE. 2009;4:e7428.

  2. 2.

    Baxby D, Bennett M. Cowpox virus (Poxviridae). In: Webster RG, Granoff A, editors. Encyclopaedia of virology. 2nd ed. London: Academic; 1999. p. 298–304.

    Google Scholar 

  3. 3.

    Bennett M, Crouch AJ, Begon M, Duffy B, Feore S, Gaskell RM, Kelly DF, McCracken CM, Vicary L, Baxby D. Cowpox in British voles and mice. Comp Pathol. 1997;116:35–44.

    Article  CAS  Google Scholar 

  4. 4.

    Bhanuprakash V, Venkatesan G, Balamurugan V, Hosamani M, Yogisharadhya R, Gandhale P, Reddy KV, Damle AS, Kher HN, Chandel BS, Chauhan HC, Singh RK. Zoonotic infections of buffalopox in India. Zoonoses Public Health. 2010;7–8:e149–55.

    Article  Google Scholar 

  5. 5.

    Bourke ATC, Dumbell KR. An unusual poxvirus from Nigeria. Bull WHO. 1972;46:621–3.

    PubMed  CAS  Google Scholar 

  6. 6.

    Chantrey J, Meyer H, Baxby D, Begon M, Bown K, Feore S, Jones T, Montgomery WI, Bennett M. Cowpox: reservoir hosts and geographic range. Epidemiol Infect. 1999;122:455–60.

    PubMed  Article  CAS  Google Scholar 

  7. 7.

    Collier WA. Vaccins antivariolques secs. Preparation de vaccine d’Otten a l’Institut Pasteur de Bandoeng, Indonesie. Bol Oficina Sanit Panam. 1953;34:143–63.

    PubMed  CAS  Google Scholar 

  8. 8.

    Da Fonseca FG, Trindade GS, Silva RL, Bonjardim CA, Ferreira PC, Kroon EG. Characterization of a vaccinia-like virus isolated in a Brazilian forest. J Gen Virol. 2002;83:223–8.

    PubMed  Google Scholar 

  9. 9.

    Damaso CRA, Espostio JJ, Condit RC, Moussatche N. An emergent poxvirus from humans and cattle in Rio de Janeiro state: Cantagalo virus may derive from Brazilian small pox vaccine. Virology. 2000;277:439–49.

    PubMed  Article  CAS  Google Scholar 

  10. 10.

    Diniz S, Trindade GS, De Fonseca FG, Kroon EG. An outbreak of mousepox in Swiss mice in a laboratory animal facility a case report. Arq Braz Med Vet Zootec. 2001;53:152–6.

    Google Scholar 

  11. 11.

    Dumbell K, Richardson M. Virological investigations of specimens from buffaloes affected by buffalopox in Maharashtra State, India between 1985 and 1987. Arch Virol. 1993;128:257–67.

    PubMed  Article  CAS  Google Scholar 

  12. 12.

    Fang Q, Yang L, Zhu W, Liu L, Wang H, Yu W, Xiao G, Tien P, Zhang L, Chen Z. Host range, growth property, and virulence of the smallpox vaccine: vaccinia virus Tian Tan strain. Virology. 2006;335:242–51.

    Article  Google Scholar 

  13. 13.

    Fenner F, Henderson DA, Arita I, Jezek Z, Ladnyi ID. Smallpox and its eradication. Geneva: World Health Organization; 1988.

    Google Scholar 

  14. 14.

    Fenner F, Wittek R, Dumbell KR. The orthopox viruses. In: Veterinary virology. 2nd ed. New York: Academic, Harcourt Brace Jovanovich; 1989.

  15. 15.

    Feore SM, Bennett M, Chantrey J, Jones T, Baxby D, Begon M. The effect of cowpox virus infection on fecundity in bank voles and wood mice. Proc R Soc Lond B. 1997;264:1457–61.

    Article  CAS  Google Scholar 

  16. 16.

    Fonseca FG, Lanna MC, Campos MA, et al. Morphological and molecular characterization of the poxvirus BeAn 58058. Arch Virol. 1998;143:1171–86.

    PubMed  Article  CAS  Google Scholar 

  17. 17.

    Hafez SM, Al-Sukayran A, dela Cruz D, Mazloum KS, Al-Bokmy AM, Al-Mukayel A, Amjad AM. Development of a live cell culture camelpox vaccine. Vaccine. 1992;10(8):533–9.

    PubMed  Article  CAS  Google Scholar 

  18. 18.

    Hosamani M, Singh SK, Mondal B, Sen A, Bhanuprakash V, Bandyopadhyay SK, Yadav MP, Singh RK. A bivalent vaccine against goat pox and Peste des Petits ruminants induces protective immune response in goats. Vaccine. 2006;24(35–36):6058–64.

    PubMed  Article  CAS  Google Scholar 

  19. 19.

    Karabatsos N, editor. International catalogue of arboviruses. 3rd ed. San Antonio: American Society of Tropical Medicine and Hygiene; 1985.

    Google Scholar 

  20. 20.

    Kolhapure RM, Deolankar RP, Tupe CD, Raut CG, Basu A, Dama BM, Pawar SD, Joshi MW, Padbirdi VS, Goverdhan MK, Banerjee K. Investigation of buffalopox outbreaks in Maharashtra State during 1992–1996. Indian J Med Res. 1997;106:441–6.

    PubMed  CAS  Google Scholar 

  21. 21.

    Lin CL, Chung CS, Heine HG, Chang W. Vaccinia virus envelope H3L protein binds to cell surface heparan sulfate and is important for intracellular mature virion morphogenesis and virus infection in vitro and in vivo. J Virol. 2000;74:3353–65.

    PubMed  Article  CAS  Google Scholar 

  22. 22.

    Lopes OS, Lacerda JPG, Fonseca IEM, et al. Cotia virus: a new agent isolated from sentinel mice in Sao Paulo, Brazil. Am J Trop Med Hyg. 1965;14:156–7.

    Google Scholar 

  23. 23.

    Marques JT, Trindade GS, da Fonseca FG, dos Santos JR, Bonjardim CA, Ferreira PCP, Kroon EG. Characterization of ATI, TK, and IFN-alpha/betaR genes in the genome of the BeAn 58085 virus, a naturally attenuated wild orthopoxvirus. Virus Genes. 2001;23:291–301.

    PubMed  Article  CAS  Google Scholar 

  24. 24.

    Murphy FA, Gibbs EPJ, Horzinek MC, Studdert MJ. Veterinary virology. 3rd ed. San Diego: Academic; 1999. p. 277–91.

  25. 25.

    Nagasse-Sugahara TK, Kisielius JJ, Ueda-Ito M, Curti SP, Figueiredo CA, Cruz AS, Silva JMM, Ramos CH, Silva CMC, Sakurai T, Salles-Gomes LF. Human vaccinia-like virus outbreaks in São Paulo and Goiás states, Brazil: virus detection, isolation and identification. Rev Inst Med Trop São Paulo. 2004;46:315–22.

    PubMed  Article  Google Scholar 

  26. 26.

    Osterrieder N, Meyer H, Pfeffer M. Characterization of the gene encoding the A-type inclusion body protein of mousepox virus. Virus Genes. 1994;9:121–35.

    Google Scholar 

  27. 27.

    Phelps A, Gates AJ, Hillier M, Eastaugh L, Ulaeto DO. Comparative efficacy of replicating smallpox vaccine strains in a murine challenge model. Vaccine. 2005;23(27):3500–7.

    PubMed  Article  CAS  Google Scholar 

  28. 28.

    Saijo M, Ami Y, Suzaki Y, Nagata N, Iwata N, Hasegawa H, Ogata M, Fukushi S, Mizutani T, Sata T, Kuratan T, Kurane I, Morikawa S. LC16m8, a highly attenuated vaccinia virus vaccine lacking expression of the membrane protein B5R, protects monkeys from Monkeypox. J Virol. 2006;80(11):5179–88.

    PubMed  Article  CAS  Google Scholar 

  29. 29.

    Silva PL, Coelho HE, Viana FC, et al. Surto de variola bovina no municio de Prata-MG. Arq Bras Med Vet Zootec. 1986;38:323–30.

    Google Scholar 

  30. 30.

    Singh IP, Singh SB. Isolation and characterization of the aetiologic agent of buffalopox. J Res Ludhiana. 1967;4:440–8.

    Google Scholar 

  31. 31.

    Singh M, Bhat PP, Mishra BP, Singh RK. Biological transmissibility of buffalopox virus. J Appl Anim Res. 1996;9:79–88.

    Article  Google Scholar 

  32. 32.

    Singh RK, Hosamani M, Balamurugan V, Satheesh CC, Rasool TJ, Yadav MP. Comparative sequence analysis of envelope protein genes of Indian buffalopox virus isolates. Arch Virol. 2006;151:1995–2005.

    PubMed  Article  CAS  Google Scholar 

  33. 33.

    Singh RK, Hosamani M, Balamurugan V, Satheesh CC, Shingal KR, Bambal RG, Ramteke V, Yadav MP. An outbreak of buffalopox in buffalo (Bubalus bubalis) dairy herds at Aurangabad in India. OIE Sci Technol Rev. 2006;25(3):981–7.

    CAS  Google Scholar 

  34. 34.

    Singh RK, Balamurugan V, Hosamani M, De UK, Chandra BM, Krishnappa MPG. B5R gene based sequence analysis of Indian buffalopox virus isolates in relation to other orthopoxviruses. Acta Virol. 2007;51(1):47–50.

    PubMed  CAS  Google Scholar 

  35. 35.

    Singh RK, Hosamani M, Balamurugan V, Bhanuprakash V, Rasool TJ, Yadav MP. Buffalopox: emergence and reemergence. Anim Health Res Rev. 2007;8(1):105–14.

    PubMed  Article  CAS  Google Scholar 

  36. 36.

    Singh RK, Balamurugan V, Hosamani M, Kallesh DJ, Bhanuprakash V. Sequence analysis of C18L gene of buffalopox virus: PCR strategy for specific detection and differentiation of buffalopox from orthopoxviruses. J Virol Methods. 2008;154(1–2):146–53.

    PubMed  Article  CAS  Google Scholar 

  37. 37.

    Telfer S, Bennett M, Bown K, Cavanagh R, Crespin L, Hazel S, Jones T, Begon M. The effects of cowpox virus on survival in natural rodent populations: increases and decreases. J Anim Ecol. 2002;71:558–68.

    Article  Google Scholar 

  38. 38.

    Topciu VI, Luca I, Moldovan E, Stoianovici V, Plavosin L, Milin D, Welter E. Transmission of vaccinia virus from vaccinated milkers to cattle. Rev Roum Med Virol. 1976;27:279–82.

    CAS  Google Scholar 

  39. 39.

    Trandade GS, da Fonseca FG, Marques JT, Nogueira ML, Mendes LCN, Borges AS, Peiro JR, Pituco EM, Bonjardim GA, Ferreira PCP, Kroon EG. Aracatuba virus: a vaccinia-like virus associated with cattle and human infection. Emerg Infect Dis. 2003;9:155–60.

    Google Scholar 

  40. 40.

    Trandade GS, da Fonseca FG, Marques JT, Diniz S, Leite JA, Bodt SD, Peer YV, Bonjardim CA, Ferreira PCP, Kroon EG. Belo Horizonte virus: a vaccinia-like virus lacking the A-type inclusion body gene isolated from infected mice. J Gen Virol. 2004;85:2015–21.

    Article  Google Scholar 

  41. 41.

    Ueda Y, Dumbell KR, Tsuruhara T, Tagaya I. Studies on Cotia virus—an unclassified poxvirus. J Gen Virol. 1978;40(2):263–76.

    PubMed  Article  CAS  Google Scholar 

  42. 42.

    Van Regenmortel MHV, Fauquet CM, Bishop DHL. Virus taxonomy. Seventh report of the International Committee on Taxonomy of Viruses. San Diego: Academic; 2000.

  43. 43.

    Venkatesan G, Balamurugan V, Gandhale PN, Singh RK, Bhanuprakash V. Viral zoonosis: a comprehensive review. J Vet Anim Adv. 2010;5(2):77–92.

    Article  Google Scholar 

  44. 44

    Venkatesan G, Balamurugan V, Prabhu M, Yogisharadhya R, Bora DP, Gandhale PN, Sankar MS, Kulkarni AM, Singh RK, Bhanuprakash V. Emerging and re-emerging zoonotic buffalopox infection: a severe outbreak in Kolhapur (Maharashtra), India. Vet Ital. 2010;46(4):439–48.

    Google Scholar 

  45. 45.

    Yadav S, Hosamani M, Balamurugan V, Bhanuprakash V, Singh RK. Partial genetic characterization of viruses isolated from pox-like infection in cattle and buffaloes: evidence of buffalo pox virus circulation in Indian cows. Arch Virol. 2010;155(2):255–61.

    PubMed  Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors thank the Director for providing necessary support and ICAR for providing fund and required support to carry out the work.

Author information

Affiliations

Authors

Corresponding author

Correspondence to R. K. Singh.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Singh, R.K., Balamurugan, V., Bhanuprakash, V. et al. Emergence and Reemergence of Vaccinia-Like Viruses: Global Scenario and Perspectives. Indian J. Virol. 23, 1–11 (2012). https://doi.org/10.1007/s13337-012-0068-1

Download citation

Keywords

  • Vaccinia virus
  • Vaccinia-like viruses
  • Buffalopox
  • Emergence and reemergence
  • Zoonosis