Skip to main content
Log in

Uniform gradient estimates on manifolds with a boundary and applications

  • Published:
Analysis and Mathematical Physics Aims and scope Submit manuscript

Abstract

We revisit the problem of obtaining uniform gradient estimates for Dirichlet and Neumann heat semigroups on Riemannian manifolds with boundary. As applications, we obtain isoperimetric inequalities, using Ledoux’s argument, and uniform quantitative gradient estimates, firstly for \(C^2_b\) functions with boundary conditions and then for the unit spectral projection operators of Dirichlet and Neumann Laplacians.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Arnaudon, M., Thalmaier, A., Wang, F.Y.: Gradient estimates on Dirichlet and Neumann eigenfunctions. (2017). arXiv:1710.10832v1

  2. Bakry, D., Ledoux, M.: Lévy–Gromov’s isoperimetric inequality for an infinite-dimensional diffusion generator. Invent. Math. 123(2), 259–281 (1996). https://doi.org/10.1007/s002220050026

    Article  MathSciNet  MATH  Google Scholar 

  3. Bismut, J.M.: Large Deviations and the Malliavin Calculus. Progress in Mathematics, vol. 45. Birkhäuser Boston Inc, Boston (1984)

    MATH  Google Scholar 

  4. Buser, P.: A note on the isoperimetric constant. Ann. Sci. École Norm. Sup. (4) 15(2), 213–230 (1982). http://www.numdam.org/item?id=ASENS_1982_4_15_2_213_0

    Article  MathSciNet  Google Scholar 

  5. Cheng, L.J., Thalmaier, A., Thompson, J.: Functional inequalities on manifolds with non-convex boundary (2017). arXiv:1711.04307

  6. Cheng, L.J., Thalmaier, A., Thompson, J.: Quantitative \({C}^1\)-estimates by Bismut formulae (2017). arXiv:1707.07121v5

  7. Elworthy, K.D.: Stochastic flows on Riemannian manifolds. In: Diffusion Processes and Related Problems in Analysis, Vol. II (Charlotte, NC, 1990), Progress in Probability, vol. 27, pp. 37–72. Birkhäuser Boston, Boston, MA (1992)

    Chapter  Google Scholar 

  8. Güneysu, B., Pigola, S.: Quantitative \({C}^1\)-estimates on manifolds. Int. Math. Res. Not. (2017). https://doi.org/10.1093/imrn/rnx016

    Article  Google Scholar 

  9. Ledoux, M.: A simple analytic proof of an inequality by P. Buser. Proc. Am. Math. Soc. 121(3), 951–959 (1994). https://doi.org/10.2307/2160298

    Article  MathSciNet  MATH  Google Scholar 

  10. Smith, H.F., Sogge, C.D.: On the \(L^p\) norm of spectral clusters for compact manifolds with boundary. Acta Math. 198(1), 107–153 (2007). https://doi.org/10.1007/s11511-007-0014-z

    Article  MathSciNet  MATH  Google Scholar 

  11. Sogge, C.D.: Concerning the \(L^p\) norm of spectral clusters for second-order elliptic operators on compact manifolds. J. Funct. Anal. 77(1), 123–138 (1988). https://doi.org/10.1016/0022-1236(88)90081-X

    Article  MathSciNet  MATH  Google Scholar 

  12. Sogge, C.D.: Eigenfunction and Bochner Riesz estimates on manifolds with boundary. Math. Res. Lett. 9(2–3), 205–216 (2002). https://doi.org/10.4310/MRL.2002.v9.n2.a7

    Article  MathSciNet  MATH  Google Scholar 

  13. Thalmaier, A.: On the differentiation of heat semigroups and Poisson integrals. Stoch. Stoch. Rep. 61(3–4), 297–321 (1997). https://doi.org/10.1080/17442509708834123

    Article  MathSciNet  MATH  Google Scholar 

  14. Wang, F.Y.: Functional inequalities for empty essential spectrum. J. Funct. Anal. 170(1), 219–245 (2000). https://doi.org/10.1006/jfan.1999.3516

    Article  MathSciNet  MATH  Google Scholar 

  15. Wang, F.Y.: Gradient estimates of Dirichlet heat semigroups and application to isoperimetric inequalities. Ann. Probab. 32(1A), 424–440 (2004). https://doi.org/10.1214/aop/1078415841

    Article  MathSciNet  MATH  Google Scholar 

  16. Wang, F.Y.: Functional Inequalities, Markov Semigroups and Spectral Theory. Science Press, Beijing (2005)

    Google Scholar 

  17. Wang, F.Y.: Gradient estimates and the first Neumann eigenvalue on manifolds with boundary. Stoch. Process. Appl. 115(9), 1475–1486 (2005). https://doi.org/10.1016/j.spa.2005.04.004

    Article  MathSciNet  MATH  Google Scholar 

  18. Wang, F.Y.: Estimates of the first Neumann eigenvalue and the log-Sobolev constant on non-convex manifolds. Math. Nachr. 280(12), 1431–1439 (2007). https://doi.org/10.1002/mana.200410555

    Article  MathSciNet  MATH  Google Scholar 

  19. Wang, F.Y.: Analysis for Diffusion Processes on Riemannian Manifolds. Advanced Series on Statistical Science and Applied Probability, vol. 18. World Scientific Publishing Co. Pte. Ltd., Hackensack (2014)

    Google Scholar 

  20. Xu, X.: Gradient estimates for the eigenfunctions on compact manifolds with boundary and Hörmander multiplier theorem. Forum Math. 21(3), 455–476 (2009). https://doi.org/10.1515/FORUM.2009.021

    Article  MathSciNet  MATH  Google Scholar 

  21. Xu, X.: Eigenfunction estimates for Neumann Laplacian and applications to multiplier problems. Proc. Am. Math. Soc. 139(10), 3583–3599 (2011). https://doi.org/10.1090/S0002-9939-2011-10782-2

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

This work has been supported by the Fonds National de la Recherche Luxembourg (FNR) under the OPEN scheme (Project GEOMREV O14/7628746). The first named author acknowledges support by NSFC (Grant No. 11501508) and Zhejiang Provincial Natural Science Foundation of China (Grant No. LQ16A010009).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anton Thalmaier.

Ethics declarations

Conflict of interest

All authors declare that they have no conflicts of interest.

Additional information

To the memory of Sasha Vasil’ev.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cheng, LJ., Thalmaier, A. & Thompson, J. Uniform gradient estimates on manifolds with a boundary and applications. Anal.Math.Phys. 8, 571–588 (2018). https://doi.org/10.1007/s13324-018-0228-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13324-018-0228-6

Keywords

Mathematics Subject Classification

Navigation