The Fourier transforms for the spatially homogeneous Boltzmann equation and Landau equation

  • Fei Meng
  • Fang Liu


In this paper, we study the Fourier transforms for two equations arising in the kinetic theory. The first equation is the spatially homogeneous Boltzmann equation. The Fourier transform of the spatially homogeneous Boltzmann equation has been first addressed by Bobylev (Sov Sci Rev C Math Phys 7:111–233, 1988) in the Maxwellian case. Alexandre et al. (Arch Ration Mech Anal 152(4):327–355, 2000) investigated the Fourier transform of the gain operator for the Boltzmann operator in the cut-off case. Recently, the Fourier transform of the Boltzmann equation is extended to hard or soft potential with cut-off by Kirsch and Rjasanow (J Stat Phys 129:483–492, 2007). We shall first establish the relation between the results in Alexandre et al.  (2000) and Kirsch and Rjasanow (2007) for the Fourier transform of the Boltzmann operator in the cut-off case. Then we give the Fourier transform of the spatially homogeneous Boltzmann equation in the non cut-off case. It is shown that our results cover previous works (Bobylev 1988; Kirsch and Rjasanow 2007). The second equation is the spatially homogeneous Landau equation, which can be obtained as a limit of the Boltzmann equation when grazing collisions prevail. Following the method in Kirsch and Rjasanow (2007), we can also derive the Fourier transform for Landau equation.


Fourier transform Boltzmann equation Landau equation 

Mathematics Subject Classification

76P05 82C40 



The authors would like to express their sincere thanks to the referees for valuable comments. This work is supported by the National Natural Science Foundation of China (Grant No. 11501292).

Compliance with ethical standards

Conflict of interest

No potential conflict of interest was reported by the authors.


  1. 1.
    Alexandre, R., Desvillettes, L., Villani, C., Wennberg, B.: Entropy dissipation and long range interactions. Arch. Ration. Mech. Anal. 152(4), 327–355 (2000)MathSciNetzbMATHCrossRefGoogle Scholar
  2. 2.
    Alexandre, R., Elsafadi, M.: Littlewood Paley decomposition and regularity issues in Boltzmann homogeneous equations. I. Non cutoff and Maxwell cases. Math. Models Methods Appl. Sci. 15, 907–920 (2005)MathSciNetCrossRefGoogle Scholar
  3. 3.
    Alexandre, R., Villani, C.: On the Landau approximation in plasma physics. Ann. Inst. Henri Poincaré Anal. Non Linéaire 21(1), 61–95 (2004)MathSciNetzbMATHGoogle Scholar
  4. 4.
    Arkeryd, L.: Intermolecular forces of infinite range and the Boltzmann equation. Arch. Ration. Mech. Anal. 77, 11–21 (1981)MathSciNetzbMATHCrossRefGoogle Scholar
  5. 5.
    Arsen’Ev, A.A., Buryak, O.E.: On the connection between a solution of the Boltzmann equation and a solution of the Landau-Fokker-Planck equation. Math. Sb. 69(2), 465–478 (1991)MathSciNetzbMATHCrossRefGoogle Scholar
  6. 6.
    Bobylev, A.V.: The theory of the nonlinear, spatially uniform Boltzmann equation for Maxwell molecules. Sov. Sci. Rev. C. Math. Phys. 7, 111–233 (1988)MathSciNetzbMATHGoogle Scholar
  7. 7.
    Bobylev, A.V., Rjasanow, S.: Difference scheme for the Boltzmann equation based on fast Fourier transform. Eur. J. Mech. B/Fluids 16(2), 293–306 (1997)MathSciNetzbMATHGoogle Scholar
  8. 8.
    Cannone, M., Karch, G.: Infinite energy solutions to the homogeneous Boltzmann equation. Commun. Pure Appl. Math. 63, 747–778 (2010)MathSciNetzbMATHGoogle Scholar
  9. 9.
    Carlen, E.A., Gabetta, E., Toscani, G.: Propagation of smoothness and the rate of exponential convergence to equilibrium for a spatially homogeneous Maxwellian gas. Commun. Math. Phys. 199, 521–546 (1999)MathSciNetzbMATHCrossRefGoogle Scholar
  10. 10.
    Desvillettes, L.: About the use of the Fourier transform for the Boltzmann equation. In: Summer School on “Methods and Models of Kinetic Theory” (M&MKT 2002). Riv. Mat. Univ. Parma 2(7), 1–99 (2003)Google Scholar
  11. 11.
    Desvillettes, L., Villani, C.: On the spatially homogeneous Landau equation for hard potentials. Part 1. Existence, uniqueness and smoothness. Commun. Partial Differ. Equ. 25(1–2), 179–259 (2000)zbMATHCrossRefGoogle Scholar
  12. 12.
    Gabetta, E., Toscani, G., Wennberg, B.: Metrics for Probability distributions and the trend to equilibrium for solutions of the Boltzmann equation. J. Stat. Phys. 81, 901–934 (1995)MathSciNetzbMATHCrossRefGoogle Scholar
  13. 13.
    Goudon, T.: On Boltzmann equations and Fokker-Planck asymptotics: influence of grazing collisions. J. Stat. Phys. 89, 751–776 (1997)MathSciNetzbMATHCrossRefGoogle Scholar
  14. 14.
    Guo, Y.: The Landau equation in a periodic box. Commun. Math. Phys 231(3), 391–434 (2002)MathSciNetzbMATHCrossRefGoogle Scholar
  15. 15.
    Ibragimov, I., Rjasanow, S.: Numerical solution of the Boltzmann equation on the uniform grid. Computing 69(2), 163–186 (2002)MathSciNetzbMATHCrossRefGoogle Scholar
  16. 16.
    Kirsch, R., Rjasanow, S.: A weak formulation of the Boltzmann equation based on the Fourier Transform. J. Stat. Phys. 129, 483–492 (2007)MathSciNetzbMATHCrossRefGoogle Scholar
  17. 17.
    Morimoto, Y., Yang, T.: Smoothing effect of the homogeneous Boltzmann equation with measure valued initial datum. Ann. Inst. Henri Poincaré Anal. Non Linéaire. 32(2), 429–442 (2015)Google Scholar
  18. 18.
    Pareschi, L., Perthame, B.: A Fourier spectral method for homogeneous Boltzmann equations. Transp. Theory Stat. Phys. 25, 369–382 (1996)MathSciNetzbMATHCrossRefGoogle Scholar
  19. 19.
    Pareschi, L., Russo, G.: Numerical solution of the Boltzmann equation, I: spectrally accurate approximation of the collision operator. SIAM J. Numer. Anal. 37(4), 1217–1245 (2000)MathSciNetzbMATHCrossRefGoogle Scholar
  20. 20.
    Pareschi, L., Russo, G.: On the stability of spectral methods for the homogeneous Boltzmann equation. Transp. Theory Stat. Phys. 29(3–5), 431–447 (2000)MathSciNetzbMATHCrossRefGoogle Scholar
  21. 21.
    Pareschi, L., Toscani, G., Villani, C.: Spectral methods for the non cut-off Boltzmann equation and numerical grazing collision limit. Numer. Math. 93(3), 527–548 (2003)MathSciNetzbMATHCrossRefGoogle Scholar
  22. 22.
    Pulvirenti, M., Toscani, G.: The theory of the nonlinear Boltzmann equation for Maxwell molecules in Fourier representation. Ann. Mat. Pura Appl. 4(171), 181–204 (1996)MathSciNetzbMATHCrossRefGoogle Scholar
  23. 23.
    Tanaka, H.: Probabilistic treatment of the Boltzmann equation of Maxwellian molecules. Z. Wahrscheinlichkeitstheorie und Verw. Gebiete 46(1), 67–105 (1978–1979)Google Scholar
  24. 24.
    Toscani, G., Villani, C.: Probability metrics and uniqueness of the solution to the Boltzmann equation for a Maxwell gas. J. Stat. Phys. 94, 619–637 (1999)MathSciNetzbMATHCrossRefGoogle Scholar
  25. 25.
    Villani, C.: On a new class of weak solutions to the spatially homogeneous Boltzmann and Landau equations. Arch. Ration. Mech. Anal. 143, 273–307 (1998)MathSciNetzbMATHCrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.School of ScienceNanjing University of Posts and TelecommunicationsNanjingPeople’s Republic of China
  2. 2.Department of Mathematics, School of ScienceNanjing University of Science and TechnologyNanjingPeople’s Republic of China

Personalised recommendations