Recent Progress in Fiber-Optic Hydrophones

Abstract

Fiber-optic hydrophone (FOH) is a significant type of acoustic sensor, which can be used in both military and civilian fields such as underwater target detection, oil and natural gas prospecting, and earthquake inspection. The recent progress of FOH is introduced from five aspects, including large-scale FOH array, very-low-frequency detection, fiber-optic vector hydrophone (FOVH), towed linear array, and deep-sea and long-haul transmission. The above five aspects indicate the future development trends in the FOH research field, and they also provide a guideline for the practical applications of FOH as well as its array.

References

  1. [1]

    J. A. Bucaro, H. D. Dardy, and E. F. Carome, “Optical fiber acoustic sensor,” Applied Optics, 1977, 16(7): 1761–1762.

    ADS  Article  Google Scholar 

  2. [2]

    C. K. Kirdendall and A. Dandridge, “Overview of high performance fibre-optic sensing,” Journal of Physics D: Applied Physics, 2004, 37(18): 197–216.

    ADS  Article  Google Scholar 

  3. [3]

    A. D. Kersey and A. Dandridge, “Multiplexed Mach-Zehnder ladder array with ten sensor elements,” Electronics Letters, 1989, 25(19): 1298–1299.

    ADS  Article  Google Scholar 

  4. [4]

    A. Dandridge and G. B. Cogdell, “Fiber optic sensors for navy applications,” IEEE LCS, 1991, 2(1): 81–89.

    Article  Google Scholar 

  5. [5]

    A. R. Davis, C. K. Kirdendall, A. Dandridge, and A. D. Kersey, “64-channel all-optical deployable array,” in Proceedings of 12th International Conference on Optical Fiber Sensors, Williamsburg, United State, 1997, DOI: https://doi.org/10.1364/OFS.1997.OFA6.

  6. [6]

    G. A. Cranch, C. K. Kirdendall, K. Daley, S. Motley, A. Bautista, J. Salzano, et al., “Large-scale remotely pumped and interrogated fiber-optic interferometric sensor array,” IEEE Photonics Technology Letters, 2003, 15(11): 1579–1581.

    ADS  Article  Google Scholar 

  7. [7]

    A. Dandridge, A. B. Tevten, and C. K. Kirdendall, “Development of the fiber optic wide aperture array: from initial development to production,” NRL Review, 2004: 177–179.

  8. [8]

    J. H. Cole, C. Kirkendall, A. Dandridge, G. Cogdell, and T. G. Giallorenzi, “Twenty-five years of interferometeric fiber optic acoustic sensors at the Naval Research Laboratory,” Journal of the Washington Academy of Sciences, 2004, 90(3): 40–57.

    Google Scholar 

  9. [9]

    G. A. Cranch, R. Crickmre, C. K. Kirkendall, A. Bautista, K. Daley, S. Motley, et al., “Acoustic performance of a large-aperture, seabed, fiber-optic hydrophone array,” The Journal of the Acoustical Society of America, 2004, 115(6): 2848–2858.

    ADS  Article  Google Scholar 

  10. [10]

    G. A. Cranch, G. M. H. Flockhart, and C. K. Kirdendall, “Efficient fiber Bragg grating and fiber Fabry-Perot sensor multiplexing scheme using a broadband pulsed mode-locked laser,” Journal of Lightwave Technology, 2005, 23(11): 3798–3807.

    ADS  Article  Google Scholar 

  11. [11]

    K. Clay, H. C. James, and B. T. Alan, “Progress in fiber optic acoustic and seismic sensing,” in Proceedings of International Conference on Optical Fibre Sensors, Mexico, 2006, pp. THB1.

  12. [12]

    C. K. Kirdendall, T. Barock, and A. Tevten, “Fiber optic towed arrays,” NRL Review, 2007: 121–123.

  13. [13]

    C. K. Kirdendall, R. Bartolo, and J. Salzano, “Distributed fiber optic sensing for homeland security,” NRL Review, 2007: 195–196.

  14. [14]

    C. W. Hodgson, M. J. Digonnet, and H. J. Shaw, “Large-scale interferometric fiber sensor arrays with multiple optical amplifiers,” Optics Letters, 1997, 22(21): 1651–1653. (two???)

    ADS  Article  Google Scholar 

  15. [15]

    C. W. Hodgson, J. L. Wagener, and M. J. F. Digonnet, “Optimization of large-scale fiber sensor arrays incorporating multiple optical amplifiers-Part I: signal-to-noise ratio,” Journal of Lightwave Technology, 1998, 16(2): 218–223.

    ADS  Article  Google Scholar 

  16. [16]

    C. W. Hodgson, J. L. Wagener, and M. J. F. Digonnet, “Optimization of large-scale fiber sensor array incorporating multiple optical amplifiers-Part2: pump power,” Journal of Lightwave Technology, 1998, 16(2): 224–231.

    ADS  Article  Google Scholar 

  17. [17]

    M. J. F. Digonnet, B. J. Vakoc, C. W. Hodgson, and G. S. Kino, “Acoustic fiber sensor arrays,” in Proceeding of Second European Workshop on Optical Fibre Sensors, Santander, Spain, 2004, pp. 39–50.

  18. [18]

    B. J. Vakoc, M. J. F. Diagonnet, and G. S. Kino, “Demonstration of a 16-sensor time-division-multiplexed sagnac-interferometer- based acoustic sensor array with an amplified telemetry and a polarization-based biasing scheme,” in Proceedings of 15th Optical Fiber Sensors Conference Technical Digest, Portland, USA, 2002.

  19. [19]

    P. J. Nash, “Review of interferometric optical fibre hydrophone technology,” Processing of Radar, Sonar and Navigation, 1996, 143(3): 204–209.

    Article  Google Scholar 

  20. [20]

    P. J. Nash, G. A. Granch, L. K. Cheng, D. Bruijn, and I. Crowe, “32 element TDM optical hydrophone array,” in Proceedings of European Workshop on Optical Fibre Sensors, Peebles, United Kingdom, 1998, pp. 238–242.

  21. [21]

    D. J. Hill, P. J. Nash, S. D. Hawker, and I. Bennion, “Progress toward an ultrathin optical hydrophone array,” in Proceedings of European Workshop on Optical Fibre Sensors, Peebles, United Kingdom, 1998, pp. 301–304.

  22. [22]

    P. J. Nash, G. A. Cranch, and D. J. Hill, “Large scale multiplexed fiber optic arrays for geophysical applications,” in Industrial Sensing Systems, United States, 2000, pp. 55–65.

  23. [23]

    G. A. Cranch and P. J. Nash, “Large-scale multiplexing of interferometric fiber-optic sensors using TDM and DWDM,” Journal of Lightwave Technology, 2001, 19(5): 687–699.

    ADS  Article  Google Scholar 

  24. [24]

    P. J. Nash, J. Latchem, G. A. Cranch, S. Motley, A. Bautista, C. K. Kirkendall, et al., “Design, development and construction of fibre-optic bottom mounted array,” in Proceedings of 15th Optical Fiber Sensors Conference Technical Digest (OFS), Portland, USA, 2002, pp. 333–336.

  25. [25]

    G. A. Cranch, P. J. Nash, and C. K. Kirkendall, “Large-scale remotely interrogated arrays of fiber-optic interferometric sensors for underwater acoustic applications,” IEEE Sensors Journal, 2003, 3(1): 19–30.

    ADS  Article  Google Scholar 

  26. [26]

    D. J. Hill, “The evolution and exploitation of the fibre-optic hydrophone,” in Proceedings of Third European Workshop on Optical Fibre Sensors, Napoli, Italy, 2007, pp. 661907-1–661907-4.

  27. [27]

    H. Nakstad and J. T. Kringlebotn, “Realisation of a full-scale fibre optic ocean bottom seismic system,” in Proceedings of 19th International Conference on Optical Fibre Sensors, Australia, 2008, pp. 700436-1–700436-4.

  28. [28]

    O. H. Waagaard, E. Rønnekleiv, S. Forbord, and D. Thingbo, “Reduction of crosstalk in inline sensor arrays using inverse scattering,” in Proceedings of 19th International Conference on Optical Fibre Sensors, Australia, 2008, pp. 70044Z-1–70044Z-4.

  29. [29]

    O. H. Waagaard, E. Rennekleiv, S. Forbord, and D. Thingbo, “Suppression of cable induced noise in an interferometric sensor system,” in Proceedings of 20th International Conference on Optical Fibre Sensors, United Kingdom, 2009, pp. 75034Q-1–75034Q-4.

  30. [30]

    E. Rennekleiv, O. H. Waagaard, D. Thingbo, and S. Forbord, “Suppression of Rayleigh scattering noise in a TDM multiplexed interferometric sensor system,” in Proceedings of Optical Fiber Communication Conference/National Fiber Optic Engineers Conference, San Diego, USA, 2008, pp. OMT4.

  31. [31]

    Y. Hu, Z. Hu, H. Luo, L. Ma, S. Xiong, Y. Liao, et al., “Recent progress toward fiber optic hydrophone research, application and commercialization in China,” in Proceedings of OFS2012 22nd International Conference on Optical Fiber Sensors, China, 2012, pp. 84210Q.

  32. [32]

    Y. Hu, “All polarization-holding fiber polarizer,” Ph.D. dissertation, Tsinghua University, China, 1999.

    Google Scholar 

  33. [33]

    M. Zhou, Y. Hu, S. Xiong, Y. Liu, M. Ni, and X. Zhang, “All polarization maintaining fiber hydrophone array,” Chinese Journal of Lasers, 2002, 29(5): 415–417.

    Google Scholar 

  34. [34]

    M. Ni, S. Xiong, Z. Meng, and R. Zhang, “Realization of digital demodulation of the phase generated-carrier technique in fiber optic hydrophone system,” Applied Acoustics, 2004, 23(6): 5–11.

    Google Scholar 

  35. [35]

    Z. Wang, Y. Hu, Z. Meng, H. Luo, and M. Ni, “Novel mechanical antialiasing fiber-optic hydrophone with a fourth-order acoustic low-pass filter,” Optics Letters, 2008, 33(11): 1267–1269.

    ADS  Article  Google Scholar 

  36. [36]

    Y. Hu, Z. Meng, S. Xiong, Y. Liu, and X. Zhang, “Development of interferometric all polarization maintaining fiber hydrophone array,” Acta Acustica, 2003, 28(2): 155–158.

    Google Scholar 

  37. [37]

    M. Ni, H. Yang, S. Xiong, and Y. Hu, “Investigation of polarization-induced fading in fiber optic interferometers with polarizer-based polarization diversity receivers,” Applied Optics, 2006, 45(11): 2387–2390.

    ADS  Article  Google Scholar 

  38. [38]

    M. Ni, Y. Hu, Z. Meng, and R. Zhang, “Study on fiber optic hydrophone unit,” Applied Acoustics, 2003, 22(2): 1–7.

    Google Scholar 

  39. [39]

    Z. Meng, Y. Hu, M. Ni, S. Xiong, R. Zhang, X. Li, et al., “Development of a 32-element fibre optic hydrophone system,” in Proceedings of Fiber Optic Sensor Technology and Applications III, Beilingham, USA, 2004, pp. 114–116.

  40. [40]

    S. Xiong, “Research on the fiber optic vector hydrophone,” Ph.D. dissertation, National University of Defense Technology, China, 2003.

    Google Scholar 

  41. [41]

    S. Xiong, H. Luo, Y. Hu, and Z. Meng, “Research on interferometric polarization maintaining fiber optic micro-vibration vector sensor,” Chinese Journal of Lasers, 2004, 31(7): 843–847.

    Google Scholar 

  42. [42]

    H. Zhang, M. Zhang, L. Wang, Y. Liao, and D. N. Wang, “Output noise analysis of optical fiber interferometric sensors using a 3×3 coupler,” Measurement Science and Technology, 2011, 22(12): 125203–125211.

    ADS  Article  Google Scholar 

  43. [43]

    H. Zhang, M. Zhang, L. Wang, Y. Liao, D. N. Wang, and Y. Zhu, “An improved PGC demodulation method to suppress the impact of laser intensity modulation,” in Proceedings of 2011 International Conference on Optical Instruments and Technology: Optical Sensors and Applications, China, 2011, pp. 81990Q.

  44. [44]

    C. Tian, L. Wang, M. Zhang, H. Zhang, X. Chu, S. Lai, et al., “Performance improvement of PGC method by using lookup table for optical seismometer,” in Proceedings of 20th International Conference on Optical Fibre Sensors, United Kingdom, 2009, pp. 750348.

  45. [45]

    W. Rao, “Study on key techniques of fiber optic vector hydrophone towed array for high resolution seafloor strata detection,” Ph.D. dissertation, National University of Defense Technology, China, 2012.

    Google Scholar 

  46. [46]

    H. Luo, S. Xiong, Y. Hu, Z. Meng, and M. Ni, “Research on all polarization-maintaining fiber optic accelerometer,” in Proceedings of Fiber Optic Sensor Technology and Applications IV, United States, 2005, pp. 60040R1-7.

  47. [47]

    J. Wang, H. Luo, Z. Meng, and Y. Hu, “Experimental research of an all-polarization-maintaining optical fiber vector hydrophone,” Journal of Lightwave Technology, 2012, 30(8): 1178–1184.

    ADS  Article  Google Scholar 

  48. [48]

    Y. Wu, “Study on key techniques of fiber optic vector hydrophone for towed line array applications,” Ph.D. dissertation, National University of Defense technology, China, 2011.

    Google Scholar 

  49. [49]

    S. Niu, Y. Hu, Z. Hu, and H. Luo, “Fiber Fabry-Pérot hydrophone based on push-pull structure and differential detection,” IEEE Photonics Technology Letters, 2011, 23(20): 1499–1501.

    ADS  Article  Google Scholar 

  50. [50]

    L. Ma, Y. Hu, H. Luo, and Z. Hu, “DFB fiber laser hydrophone with flat frequency response and enhanced acoustic pressure sensitivity,” IEEE Photonics Technology Letters, 2009, 21(17): 1280–1282.

    ADS  Article  Google Scholar 

  51. [51]

    W. Chen, “Influences and suppression techniques of nonlinear effects on long-haul interferometric fiber sensing systems,” Ph.D. dissertation, National University of Defense Technology, China, 2013.

    Google Scholar 

  52. [52]

    C. Cao, “Study on key techniques of high performance fiber-optics hydrophone array based on ultra-remotely optical transmission and cascaded amplifiers,” Ph.D. dissertation, National University of Defense Technology, China, 2013.

  53. [53]

    G. A. Cranch and P. J. Nash, “High multiplexing gain using TDM and WDM in interferometric sensor arrays,” in Proceedings of Fiber Optic Sensor Technology and Applications, United States, 1999.

  54. [54]

    C. W. Hodgson and B. J. Vakoc, “Large scale WDM/TDM sensor array employing erbium-doped fiber amplifiers,” United States, U.S. Patent 6,282,334, August 28, 2001.

  55. [55]

    P. J. Nash, J. Latchem, G. A. Cranch, S. Motley, A. Bautista, C. K. Kirkendall, et al., “Design, development and construction of fibre-optic bottom mounted array,” in Proceedings of 15th Optical Fiber Sensors Conference Technical Digest (OFS), Portland, USA, 2002, pp. 333–336.

  56. [56]

    O. Farsund, C. Erbeia, C. Lachaize, A. Hordvik, K. Nakken, A. Berg, et al., “Design and field test of a 32-element fiber optic hydrophone system,” in Proceedings of 2002 15th Optical Fiber Sensors Conference Technical Digest, Portland, USA, 2002.

  57. [57]

    Y. Shindo, T. Yoshikawa, and H. Mikada, “A large scale seismic sensing array on the seafloor with fiber optic accelerometers,” in Proceedings of Sensors, IEEE, Orlando, USA, 2002.

  58. [58]

    G. A. Cranch, C. K. Kirkendall, K. Daley, S. Motley, A. Bautista, J. Salzano, et al., “Large-scale remotely pumped and interrogated fiber-optic interferometric sensor array,” IEEE Photonics Technology Letters, 2003, 15(11): 1579–1581.

    ADS  Article  Google Scholar 

  59. [59]

    D. Hill and P. Nash, “Fibre-optic hydrophone array for acoustic surveillance in the littoral,” in Proceedings of Photonics for Port and Harbor Security, United States, 2005.

  60. [60]

    E. Austin, Q. Zhang, S. Alam, M. Zervas, R. Slavik, P. Petropoulos, et al., “500km remote interrogation of optical sensor arrays,” in Proceedings of 21st International Conference on Optical Fibre Sensors (OFS21), Canada, 2011.

  61. [61]

    O. C. Akkaya, M. J. F. Digonnet, G. S. Kino, and O. Solgaard, “Time-division-multiplexed interferometric sensor arrays,” Journal of Lightwave Technology, 2013, 31(16): 2701–2708.

    ADS  Article  Google Scholar 

  62. [62]

    Y. Liao, E. Austin, P. J. Nash, S. A. Kingsley, and D. J. Richardson, “High performance architecture design for large scale fibre-optic sensor arrays using distributed EDFAs and hybrid TDM/DWDM,” Measurement Science and Technology, 2013, 24(9): 094024.

    ADS  Article  Google Scholar 

  63. [63]

    Y. Liao, E. Austin, P. J. Nash, S. A. Kingsley, and D. J. Richardson, “Highly scaled amplified hybrid TDM/DWDM array architecture for interferometric fiber-optic sensor systems,” Journal of Lightwave Technology, 2013, 31(6): 882–888.

    ADS  Article  Google Scholar 

  64. [64]

    V. S. Lavrov, M. Y. Plotnikov, S. M. Aksarin, M. E. Efimov, V. A. Shulepov, A. V. Kulikov, et al., “Experimental investigation of the thin fiber-optic hydrophone array based on fiber Bragg gratings,” Optical Fiber Technology, 2017, 34(3): 47–51.

    ADS  Article  Google Scholar 

  65. [65]

    P. J. Nash and G. A. Cranch, “Multi-channel optical hydrophone array with time and wavelength division multiplexing,” in Proceedings of 13th International Conference on Optical Fiber Sensors, Kyongju, Republic of Korea, 1999, pp. 374613

  66. [66]

    X. Hao, H. Zhang, C. Wei, C. Wang, and H. Zhang, “Sea trial for fiber-optic hydrophone array used in marine geophysical exploration,” Journal of Tropical Oceanography, 2018, 37(3): 93–98 (in Chinese).

    Google Scholar 

  67. [67]

    A. Dandridge, A. M. Yurek, and A. B. Tventen, “All optical towed array (AOTA) tow test results,” in AFCEA’90, McLean, USA, 1990.

  68. [68]

    A. Dandridge, “Fiber optic interferometric sensors at sea,” Optics and Photonics News, 2019, 30(6): 34–41.

    ADS  Article  Google Scholar 

  69. [69]

    M. Eriksrud, “Seabed permanent reservoir monitoring (PRM)-A valid 4D seismic technology for fields in the North Sea,” First break, 2014, 32(5): 67–73.

    Article  Google Scholar 

  70. [70]

    S. Goodman, S. Foster, J. V. Velzen, and H. Mendis, “Field demonstration of a DFB fibre laser hydrophone seabed array in Jervis Bay, Australia,” in Proceedings of 20th International Conference on Optical Fibre Sensors, United Kingdom, 2009, pp. 75034L.

  71. [71]

    S. Foster, A. Tikhomirov, and V. J. Van, “Towards a high performance fiber laser hydrophone,” Journal of Lightwave Technology, 2011, 29(9): 1335–1342.

    ADS  Article  Google Scholar 

  72. [72]

    M. Y. Plotnikov, V. S. Lavrov, P. Y. Dmitraschenko, A. V. Kulikov, and I. K. Meshkovsky, “Thin cable fiber-optic hydrophone array for passive acoustic surveillance applications,” IEEE Sensors Journal, 2019, 19(9): 3376–3382.

    ADS  Article  Google Scholar 

  73. [73]

    M. Li, Z. Sun, X. Zhang, S. Li, Z. Song, M. Wang, et al., “Development of high sensitivity eight-element multiplexed fiber laser acoustic pressure hydrophone array and interrogation system,” Photonic Sensors, 2017, 7(3): 253–260.

    ADS  Article  Google Scholar 

  74. [74]

    A. B. Tveten, A. D. Dandridge, C. M. Davis, and T. G. Giallorenzi, “Fibre optic accelerometer,” Electronics Letters, 1980, 16(22): 854–856.

    ADS  Article  Google Scholar 

  75. [75]

    A. D. Kersey, D. A. Jackson, and M. Corke, “High-sensitivity fibre-optic accelerometer,” Electronics Letters, 1982, 18(13): 559–561.

    ADS  Article  Google Scholar 

  76. [76]

    R. D. Pechstedt and D. A. Jackson, “Performance analysis of a fiber optic accelerometer based on a compliant cylinder design,” Review of Scientific Instruments, 1995, 66(1): 207–214.

    ADS  Article  Google Scholar 

  77. [77]

    G. A. Cranch and P. J. Nash, “High-responsivity fiber-optic flexural disk accelerometers,” Journal of Lightwave Technology, 2000, 18(9): 1233–1243.

    ADS  Article  Google Scholar 

  78. [78]

    G. H. Ames and J. M. Maguire, “Erbium fiber laser accelerometer,” IEEE Sensors Journal, 2007, 7(4): 557–561.

    ADS  Article  Google Scholar 

  79. [79]

    P. Jackson, S. Foster, and S. Goodman, “A fibre laser acoustic vector sensor,” in Proceedings of 20th International Conference on Optical Fibre Sensors, Edinburgh, UK, 2009, pp. 750329.

  80. [80]

    J. Wang, H. Luo, Z. Meng, and Y. Hu, “Experimental research of an all-polarization-maintaining optical fiber vector hydrophone,” Journal of Lightwave Technology, 2012, 30(8): 1178–1184.

    ADS  Article  Google Scholar 

  81. [81]

    C. Peng, X. Zhang, and Z. Meng, “Bearing estimation for optical fiber vector hydrophone with in-band resonance,” Applied Acoustics, 2020, 158: 107055-1–107055-7.

    Article  Google Scholar 

  82. [82]

    P. Nash, A. Strudley, R. Crickmore, and J. Defreitas, “High efficiency TDM/WDM architectures for seismic reservoir monitoring,” in Proceedings of 20th International Conference on Optical Fibre Sensors, Edinburgh, UK, 2009, pp. 75037T.

  83. [83]

    J. T. Kringlebotn, H. Nakstad, and M. Eriksrud, “Fibre optic ocean bottom seismic cable system: from innovation to commercial success,” in Proceedings of 20th International Conference on Optical Fibre Sensors, Edinburgh, UK, 2009, pp. 75037U.

  84. [84]

    F. Roar, “A fibre optic accelerometer and a method of manufacturing a fibre optic accelerometer,” Europe Patent EP2369352, December 19, 2012.

  85. [85]

    T. Chang, Z. Wang, Y. Yang, Y. Zhang, Z. Zheng, L. Cheng, et al., “Fiber optic interferometric seismometer with phase feedback control,” Optics Express, 2020, 28(5): 6102–6122.

    ADS  Article  Google Scholar 

  86. [86]

    Y. Yang, Z. Wang, T. Chang, M. Yu, J. Chen, G. Zheng, et al., “Seismic observation and analysis based on three-component fiber optic seismometer,” IEEE Access, 2020, 8: 1374–1382.

    Article  Google Scholar 

  87. [87]

    J. Chen, T. Chang, Q. Fu, J. Lang, W. Gao, Z. Wang, et al., “A fiber-optic interferometric tri-component geophone for ocean floor seismic monitoring,” Sensors, 2017, 17(1): 47.

    Article  Google Scholar 

  88. [88]

    G. A. Cranch and P. J. Nash, “High-responsivity fiber-optic flexural disk accelerometers,” Journal of Lightwave Technology, 2000, 18(9): 1233–1243.

    ADS  Article  Google Scholar 

  89. [89]

    P. Jackson, S. Foster, and S. Goodman, “A fibre laser acoustic vector sensor,” in Proceedings of 20th International Conference on Optical Fibre Sensors, Edinburgh, UK, 2009, pp. 750329.

  90. [90]

    G. A. Cranch, G. A. Miller, and C. K. Kirkendall, “Fiber laser sensors: enabling the next generation of miniaturized, wideband marine sensors,” in Proceedings of Fiber Optic Sensors and Applications VIII, United States, 2011, pp. 80280I.

  91. [91]

    S. B. Foster, G. A. Cranch, J. Harrison, A. E. Tikhomirov, and G. A. Miller, “Distributed feedback fiber laser strain sensor technology,” Journal of Lightwave Technology, 2017, 35(16): 3514–3530.

    ADS  Article  Google Scholar 

  92. [92]

    M. Jin, H. Ge, D. Li, and C. Ni, “Three-component homovibrational vector hydrophone based on fiber Bragg grating F-P interferometry,” Applied Optics, 2018, 57(30): 9195–9202.

    ADS  Article  Google Scholar 

  93. [93]

    X. Zhang, F. Zhang, S. Jiang, L. Min, M. Li, G. Peng, et al., “Short cavity DFB fiber laser based vector hydrophone for low frequency signal detection,” Photonic Sensors, 2017, 7(4): 325–328.

    ADS  Article  Google Scholar 

  94. [94]

    G. A. Cranch, G. A. Miller, and C. K. Kirkendall, “Fiber-optic, cantilever-type acoustic motion velocity hydrophone,” Journal of the Acoustical Society of America, 2012, 132 (1): 103–114.

    ADS  Article  Google Scholar 

  95. [95]

    G. A. Cranch, J. E. Lane, G. A. Miller, and J. W. Lou, “Low frequency driven oscillations of cantilevers in viscous fluids at very low Reynolds number,” Journal of Applied Physics, 2013, 113(19): 194904.

    ADS  Article  Google Scholar 

  96. [96]

    J. W. Lou, G. A. Cranch, G. A. Miller, and C. K. Kirkendall, “Miniaturization of acoustic vector sensors enabled by viscous fluids: Towards fiber laser hair sensors,” in Proceedings of Sensors, 2013 IEEE, Baltimore, USA, 2013.

  97. [97]

    J. H. Cole, J. A. Bucaro, C. K. Kirkendall, and A. Dandridge, “The origin, history and future of fiber-optic interferometric acoustic sensors for US Navy applications,” in Proceedings of 21st International Conference on Optical Fibre Sensors, Ottawa, Canada, 2011, pp. 775303.

  98. [98]

    F. Souto, “Fibre optic towed array: The high tech compact solution for naval warfare,” in Proceedings of Acoustics 2013, Victor Harbor, Australia, 2013.

  99. [99]

    R. Rajesh, C. Sreehari, K. Vivek, S. S. Kumar, T. Praveen, S. V. Pereira, et al., “An eight element hydrophone array using DFB fiber laser with bender bar packaging,” in Proceedings of 13th International Conference on Fiber Optics and Photonics, Kanpur, India, 2016, pp. Th3A.52.

  100. [100]

    H. Zhang, X. W, and C Zhao, “Sea trial of 16-element DFB-FL hydrophone towed array,” in Proceedings of Applied Optics and Photonics China (AOPC2019), Beijing, China, 2019, pp. 1134016.

  101. [101]

    C. Peng and X. Zhang, “A dynamic depth estimation method for towed optical fiber hydrophone array,” The Journal of the Acoustical Society of America, 2018, 143(5): EL399–EL404.

    ADS  Article  Google Scholar 

  102. [102]

    Z. Zheng, T. C. Yang, P. Gerstoft, and X. Pan, “Joint towed array shape and direction of arrivals estimation using sparse Bayesian learning during maneuvering,” The Journal of the Acoustical Society of America, 2020, 147(3): 1738–1751.

    ADS  Article  Google Scholar 

  103. [103]

    G. Wang, F. Liu, Y. Shi, and Y. Yi, “A method for estimating the shape of towed array based on genetic algorithm,” in Proceedings of IEEE International Conference on Signal Processing, Communications and Computing, Xiamen, China, 2017, pp: 1–4.

  104. [104]

    J. L. Odom and J. L. Krolik, “Passive Towed Array Shape Estimation Using Heading and Acoustic Data”, IEEE Journal of Oceanic Engineering, 2015, 40(2): 465–474

    ADS  Article  Google Scholar 

  105. [105]

    H. Martins, M. B. Marques, and O. Frazo, “300 km-ultralong Raman fiber lasers using a distributed mirror for sensing applications,” Optics Express, 2011, 19(19): 18149–18154.

    ADS  Article  Google Scholar 

  106. [106]

    X. Jia, Y. Rao, C. Yuan, J. Li, X. Yan, Z. Wang, et al., “Hybrid distributed Raman amplification combining random fiber laser based 2nd-order and low-noise LD based 1st-order pumping,” Optics Express, 2013, 21(21): 24611–24619.

    ADS  Article  Google Scholar 

  107. [107]

    S. Olsson, H. Eliasson, E. Astra, M. Karlsson, and P. A. Andrekson. “Long-haul optical transmission link using low-noise phase-sensitive amplifiers,” Nature Communications, 2018, 9(1): 2513.

    ADS  Article  Google Scholar 

  108. [108]

    P. Rosa, G. Rizzelli, X. Pang, O. Ozolins, A. Udalcovs, M, Tan, et al., G. Jacobsen, S. Popov, and J. D. Ania-Castañón, “Unrepeatered 240-km 64-QAM transmission using distributed Raman amplification over SMF fiber,” Applied Sciences, 2020, 10(4): 1433

    Article  Google Scholar 

  109. [109]

    Y. Fu, Y. Rao, R. Zhu, Z. Wang, B. Han, H. Wu, and C. Lu, “175km repeaterless BOTDA with hybrid 2nd- and 3rd-order Raman random fiber laser amplification,” in Proceedings of 26th International Conference on Optical Fiber Sensors, Lausanne Switzerland, 2018, pp. TuD2

  110. [110]

    C. Cao, S. Xiong, Q. Yao, Z. Hu, and Y. Hu, “Performance of a 400km interrogated fiber optics hydrophone array,” in Proceedings of 23rd International Conference on Optical Fiber Sensors, Santander, Spain, 2014, pp. 91579B.

  111. [111]

    W. Chen and Z. Meng, “Intensity and phase noise caused by stimulated Brillouin scattering,” in Proceedings of 21st International Conference on Optical Fibre Sensors, Ottawa, Canada, 2011, pp. 77532G.

  112. [112]

    G. P. Agrawal, Nonlinear fiber optics. Beijing: Publishing House of Electronics Industry, 2002.

    Google Scholar 

  113. [113]

    A. Hirose, Y. Takushima, and T. Okoshi, “Suppression of stimulated Brillouin scattering and Brillouin crosstalk by frequency-sweeping spread-spectrum scheme,” Journal of Optical Communications, 1991, 12(3): 82–85.

    ADS  Article  Google Scholar 

  114. [114]

    N. Yoshizawa and T. Imai, “Stimulated Brillouin scattering suppression by means of applying strain distribution to fiber with cabling,” Journal of Lightwave Technology, 1993, 11(10): 1518–1522.

    ADS  Article  Google Scholar 

  115. [115]

    F. W. Willems, W. Muys, and J. S. Leong, “Simultaneous suppression of stimulated Brillouin scattering and interferometric noise in externally modulated lightwave AM-SCM systems,” IEEE Photonics Technology Letters, 1994, 6(12): 1476–1478.

    ADS  Article  Google Scholar 

  116. [116]

    P. T. Dinda, G. Millot, and P. Louis, “Simultaneous achievement of suppression of modulational instability and reduction of stimulated Raman scattering in optical fibers by orthogonal polarization pumping,” Journal of Optical Society of America B, 2000, 17(10): 699–701.

    Article  Google Scholar 

  117. [117]

    W. Chen and Z. Meng, “Effects of phase modulation used for SBS suppression on phase noise in an optical fibre,” Journal of Physics B: Atomic, Molecular and Optical Physics, 2011, 44(16): 165402.

    ADS  Article  Google Scholar 

  118. [118]

    W. Du, P. Zhou, Y. Ma, X. Wang, J. Zhu, X. Dong, et al., “Experimental study of SBS suppression with phase-modulation in all-fiber amplifier,” in Proceedings of International Symposium on Photoelectronic Detection and Imaging 2011, Beijing, China, 2011, pp. 81921C.

  119. [119]

    J. O. White, A. Vasilyev, J. P. Cahill, N. Satyan, and O. Okusaga, “Suppression of stimulated Brillouin scattering in optical fibers using a linearly chirped diode laser,” Optics Express, 2012, 20(14): 15872–15881.

    ADS  Article  Google Scholar 

  120. [120]

    W. Chen and Z. Meng, “Effects of phase modulation on threshold of stimulated Brillouin scattering in optical fibers,” Chinese Journal of Lasers, 2011, 38(3): 140–143 (in Chinese).

    Google Scholar 

  121. [121]

    X. Hu, W. Chen, X. Tu, and Z. Meng, “Theoretical and experimental study of suppressing stimulated Brillouin scattering and phase noise in interferometric fiber sensing systems with phase modulation,” Applied Optics, 2015, 54(8): 2018–2022.

    ADS  Article  Google Scholar 

  122. [122]

    X. Hu, W. Chen, S. Sun, Y. Lu, and Z. Meng, “The effect of modulation instability on the interferometric fiber sensing systems,” in Proceedings of Opt-Electronics and communications Conference (OECC) and Photonics Global Conference (PGC), Singapore, 2017.

  123. [123]

    M. A. Soto, M. Alem, W. Chen, L. Thévenaz, and L. R. Jaroszewicz, “Mitigating modulation instability in Brillouin distributed fibre sensors,” in Proceedings of Fifth European Workshop on Optical Fibre Sensors, Krakow, Poland, 2013, pp. 87943J.

  124. [124]

    J. Urricelqui, M. Alem, M. Sagues, L. Thévenaz, A. Loayssa, and M. A. Soto, “Mitigation of modulation instability in Brillouin distributed fiber sensors by using orthogonal polarization pulses,” in Proceedings of 24th International Conference on Optical Fibre Sensors, Brazil, 2015, pp. 963433.

  125. [125]

    M. A. Soto, A. L. Ricchiuti, L. Zhang, D. Barrera, S. Sales, and L. Thévenaz, “Time and frequency pump-probe multiplexing to enhance the signal response of Brillouin optical time-domain analyzers,” Optics Express, 2014, 22(23): 28584–28595.

    ADS  Article  Google Scholar 

  126. [126]

    X. Hu, W. Chen, Y. Lu, M. Chen, and Z. Meng, “Suppression of spontaneous modulation instability and phase noise with a coherent seed in the interferometric fiber sensing systems,” Optics Letters, 2018, 34(15): 3642–3645.

    ADS  Article  Google Scholar 

Download references

Acknowledgment

The authors would like to acknowledge the support of the National Natural Science Foundation of China (Grant Nos. 61775238, 61705263, and 61705262).

Author information

Affiliations

Authors

Corresponding author

Correspondence to Zhou Meng.

Rights and permissions

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Meng, Z., Chen, W., Wang, J. et al. Recent Progress in Fiber-Optic Hydrophones. Photonic Sens 11, 109–122 (2021). https://doi.org/10.1007/s13320-021-0618-5

Download citation

Keywords

  • Fiber-optic hydrophone
  • large-scale array
  • very-low-frequency detection
  • fiber-optic vector hydrophone
  • towed linear array
  • deep sea
  • long-haul fiber transmission