Graphene-Fiber Biochemical Sensors: Principles, Implementations, and Advances


Single atomically thick graphene, with unique structural flexibility, surface sensitivity, and effective light-mater interaction, has shown exceptional advances in optoelectronics. It opens a door for diverse functionalized photonic devices, ranging from passive polarizers to active lasers and parametric oscillators. Among them, graphene-fiber biochemical sensors combine the merits of both graphene and fiber structures, demonstrating impressively high performances, such as single-molecule detectability and fast responsibility. These graphene-fiber biochemical sensors can offer tools in various applications, such as gas tracing, chemical analysis, and medical testing. In this paper, we review the emerging graphene-fiber biochemical sensors comprehensively, including the sensing principles, device fabrications, systematic implementations, and advanced applications. Finally, we summarize the state-of-the-art graphene-fiber biochemical sensors and put forward our outlooks on the development in the future.


  1. [1]

    B. Yao, Y. Wu, Z. Wang, Y. Cheng, Y. Rao, Y. Gong, et al., “Demonstration of complex refractive index of graphene waveguide by microfiber-based Mach-Zehnder interferometer,” Optics Express, 2013, 21(24): 29818–29826.

    ADS  Article  Google Scholar 

  2. [2]

    V. Semwal and B. D. Gupta, “Highly sensitive surface plasmon resonance based fiber optic pH sensor utilizing rGO-Pani nanocomposite prepared by in situ method,” Sensors and Actuators B: Chemical, 2019, 283: 632–642.

    Article  Google Scholar 

  3. [3]

    H. Ting and S. C. Kin, “Graphene-based ammonia-gas sensor using in-fiber Mach-Zehnder interferometer,” IEEE Photonics Technology Letters, 2017, 29(23): 2035–2038.

    Article  Google Scholar 

  4. [4]

    W. Xu, T. Yang, F. Qin, D. Gong, Y. Du, and G. Dai, “A sprayed graphene pattern-based flexible strain sensor with high sensitivity and fast response,” Sensors (Switzerland), 2019, 19(5): 1–11.

    Google Scholar 

  5. [5]

    Z. Cao, B. Yao, C. Qin, R. Yang, Y. Guo, Y. Zhang, et al., “Biochemical sensing in graphene-enhanced microfiber resonators with individual molecule sensitivity and selectivity,” Light: Science & Applications, 2019, 8(1): 4–13.

    ADS  Article  Google Scholar 

  6. [6]

    J. A. Kim, T. Hwang, S. R. Dugasani, R. Amin, A. Kulkarni, S. H. Park, et al., “Graphene based fiber optic surface plasmon resonance for bio-chemical sensor applications,” Sensors and Actuators B: Chemical, 2013, 187: 426–433.

    Article  Google Scholar 

  7. [7]

    B. N. Shivananju, W. Yu, Y. Liu, Y. Zhang, B. Lin, et al., “The roadmap of graphene-based optical biochemical sensors,” Advanced Functional Materials., 2017, 27(19): 1–19.

    Google Scholar 

  8. [8]

    H. Chen, R. Li, and F. Xu, “Optical microfiber sensors: sensing mechanisms, and recent advances,” Journal of Lightwave Technology, 2019, 37(11): 2577–2589.

    ADS  Article  Google Scholar 

  9. [9]

    L. Tong, “Micro/nanofibre optical sensors: challenges and prospects,” Sensors (Switzerland), 2018, 18(3): 903.

    Article  Google Scholar 

  10. [10]

    W. Choi, I. Lahiri, R. Seelaboyina, and Y. S. Kang, “Synthesis of graphene and its applications: a review,” Critical Reviews in Solid State and Materials Sciences, 2010, 35(1): 52–71.

    ADS  Article  Google Scholar 

  11. [11]

    A. K. Geim, “Graphene: status and prospects,” Science, 2009, 324(5934): 1530–1534.

    ADS  Article  Google Scholar 

  12. [12]

    M. J. Allen, V. C. Tung, and R. B. Kane, “Honeycomb carbon: a review of graphene,” Chemical Reviews, 2010, 110(1): 132–145.

    Article  Google Scholar 

  13. [13]

    F. Bonaccorso, Z. Sun, T. Hasan, and A. C. Ferrari, “Graphene photonics and optoelectronics,” Nature Photonics, 2010, 4(9): 611–622.

    ADS  Article  Google Scholar 

  14. [14]

    R. J. Young, I. A. Kinloch, L. Gong, and K. S. Novoselov, “The mechanics of graphene nanocomposites: a review,” Composites Science and Technology, 2012, 72(12): 1459–1476.

    Article  Google Scholar 

  15. [15]

    H. Chang and H. Wu, “Graphene-based nanomaterials: synthesis, properties, and optical and optoelectronic applications,” Advanced Functional Materials, 2013, 23(16): 1984–1997.

    Article  Google Scholar 

  16. [16]

    W. Li, B. Chen, C. Meng, W. Fang, Y. Xiao, X. Li, et al., “Ultrafast all-optical graphene modulator,” Nano Letters, 2014, 14(2): 955–959.

    ADS  Article  Google Scholar 

  17. [17]

    A. Martinez and Z. Sun, “Nanotube and graphene saturable absorbers for fibre lasers,” Nature Photonics, 2013, 7(11): 842–845.

    ADS  Article  Google Scholar 

  18. [18]

    B. Yao, Y. Liu, S. W. Huang, C. Choi, Z. Xie, J. F. Flores, et al., “Broadband gate-tunable terahertz plasmons in graphene heterostructures,” Nature Photonics, 2018, 12(1): 22–28.

    ADS  Article  Google Scholar 

  19. [19]

    S. Y. Hong, J. I. Dadap, N. Petrone, P. C. Yeh, J. Hone, and R. M. Osgood, “Optical third-harmonic generation in graphene,” Physical Review X, 2013, 3(2): 021014.

    ADS  Article  Google Scholar 

  20. [20]

    B. Yao, C. Yu, Y. Wu, S. W. Huang, H. Wu, Y. Gong, et al., “Graphene-enhanced Brillouin optomechanical microresonator for ultrasensitive gas detection,” Nano Letters, 2017, 17(8): 4996–5002.

    ADS  Article  Google Scholar 

  21. [21]

    N. An, T. Tan, Z. Peng, C. Qin, Z. Yuan, L. Bi, et al., “Electrically tunable four-wave-mixing in graphene heterogeneous fiber for individual gas molecule detection,” Nano Letters, 2020, 20(9): 6473–6480.

    ADS  Article  Google Scholar 

  22. [22]

    A. H. Castro Neto, F. Guinea, N. M. R. Peres, K. S. Novoselov, and A. K. Geim, “The electronic properties of graphene,” Reviews of Modern Physics, 2009, 81(1): 109–162.

    ADS  Article  Google Scholar 

  23. [23]

    S. A. Mikhailov and K. Ziegler, “New electromagnetic mode in graphene,” Physical Review letters, 2007, 99(1): 1–4.

    Article  Google Scholar 

  24. [24]

    P. Zheng and N. Wu, “Fluorescence and sensing applications of graphene oxide and graphene quantum dots: a review,” Chemistry — An Asian Journal, 2017, 12(18): 2343–2353.

    Article  Google Scholar 

  25. [25]

    P. Avouris, Z. Chen, and V. Perebeinos, “Carbon-based electronics,” Nature Nanotechnology, 2007, 2(10): 605–615.

    ADS  Article  Google Scholar 

  26. [26]

    Y. Wu, B. Yao, C. Yu, and Y. Rao, “Optical graphene gas sensors based on microfibers: a review,” Sensors (Switzerland), 2018, 18(4): 941.

    Article  Google Scholar 

  27. [27]

    A. Das, S. Pisana, B. Chakraborty, S. Piscanec, S. K. Saha, U. V. Waghmare, et al., “Monitoring dopants by Raman scattering in an electrochemically top-gated graphene transistor,” Nature Nanotechnology, 2008, 3(4): 210–215.

    Article  Google Scholar 

  28. [28]

    U. Sampath, D. Kim, and M. Song, “Hemoglobin detection using a graphene oxide functionalized side-polished fiber sensor,” in SPIE Optics + Optoelectronics, Prague, Apirl, 2019, pp. 82.

  29. [29]

    S. E. U. Lima, R. G. Farias, F. M. Araújo, L. A. Ferreira, J. L. Santos, V. Miranda, et al., “Fiber laser sensor based on a phase-shifted chirped grating for acoustic sensing of partial discharges,” Photonic Sensors, 2013, 3(1): 44–51.

    ADS  Article  Google Scholar 

  30. [30]

    A. N. Grigorenko, M. Polini, and K. S. Novoselov, “Graphene plasmonics,” Nature Photonics, 2012, 6(11): 749–758.

    ADS  Article  Google Scholar 

  31. [31]

    W. Wei, J. Nong, Y. Zhu, G. Zhang, N. Wang, S. Luo, et al., “Graphene/Au-enhanced plastic clad silica fiber optic surface plasmon resonance sensor,” Plasmonics, 2018, 13(2): 483–491.

    Article  Google Scholar 

  32. [32]

    X. Yang, Z. Sun, T. Low, H. Hu, X. Guo, F. J. G. de Abajo, et al., “Nanomaterial-based plasmon-enhanced infrared spectroscopy,” Advanced Materials, 2018, 30(20): 1704896.

    Article  Google Scholar 

  33. [33]

    G. X. Ni, A. S. McLeod, Z. Sun, L. Wang, L. Xiong, K. W. Post, et al., “Fundamental limits to graphene plasmonics,” Nature, 2018, 557(7706): 530–533.

    ADS  Article  Google Scholar 

  34. [34]

    R. B. Sekar and A. Periasamy, “Fluorescence resonance energy transfer (FRET) microscopy imaging of live cell protein localizations,” The Journal of Cell Biology, 2003, 160(5): 629–633.

    Article  Google Scholar 

  35. [35]

    B. Yao, Y. Wu, C. Yu, J. He, Y. Rao, Y. Gong, et al., “Partially reduced graphene oxide based FRET on fiber-optic interferometer for biochemical detection,” Scientific Reports, 2016, 6: 23706.

    ADS  Article  Google Scholar 

  36. [36]

    P. Suvarnaphaet and S. Pechprasarn, “Graphene-based materials for biosensors: a review,” Sensors (Switzerland), 2017, 17(10): 2161.

    Article  Google Scholar 

  37. [37]

    X. Li, W. Cai, J. An, S. Kim, J. Nah, D. Yang, et al., “Large-area synthesis of high-quality and uniform graphene films on copper foils,” Science, 2009, 324(5932): 1312–1314.

    ADS  Article  Google Scholar 

  38. [38]

    D. Parviz, F. Irin, S. A. Shah, S. Das, C. B. Sweeney, and M. J. Green, “Challenges in liquid-phase exfoliation, processing, and assembly of pristine graphene,” Advanced Materials, 2016, 28(40): 8796–8818.

    Article  Google Scholar 

  39. [39]

    M. Yi and Z. Shen, “A review on mechanical exfoliation for the scalable production of graphene,” Journal of Materials Chemistry A, 2015, 3(22): 11700–11715.

    Article  Google Scholar 

  40. [40]

    V. Sharma, Y. Jain, M. Kumari, R. Gupta, S. K. Sharma, S. K. Sharma, et al., “Synthesis and characterization of graphene oxide (GO) and reduced graphene oxide (rGO) for gas sensing application,” Macromolecular Symposia, 2017, 376(1): 1–5.

    ADS  Google Scholar 

  41. [41]

    R. Muñoz and C. Gómez-Aleixandre, “Review of CVD synthesis of graphene,” Chemical Vapor Deposition, 2013, 19(10-11-12): 297–322.

    Article  Google Scholar 

  42. [42]

    S. Perumbilavil, P. Sankar, T. Priya Rose, and R. Philip, “White light Z-scan measurements of ultrafast optical nonlinearity in reduced graphene oxide nanosheets in the 400–700 nm region,” Applied Physics Letters, 2015, 107(5): 051104.

    ADS  Article  Google Scholar 

  43. [43]

    T. Tan, X. Jiang, C. Wang, B. Yao, and H. Zhang, “2D material optoelectronics for information functional device applications: status and challenges,” Advanced Science, 2020, 7(11): 2000058.

    Article  Google Scholar 

  44. [44]

    K. Chen, X. Zhou, X. Cheng, R. Qiao, Y. Cheng, C. Liu, et al., “Graphene photonic crystal fibre with strong and tunable light-matter interaction,” Nature Photonics, 2019, 13(11): 754–759.

    ADS  Article  Google Scholar 

  45. [45]

    J. Ma, W. Jin, H. L. Ho, and J. Y. Dai, “High-sensitivity fiber-tip pressure sensor with graphene diaphragm,” Optics Letters, 2012, 37(13): 2493–2495.

    ADS  Article  Google Scholar 

  46. [46]

    S. Y. Choi, D. K. Cho, Y.-W. Song, K. Oh, K. Kim, et al., “Graphene-filled hollow optical fiber saturable absorber for efficient soliton fiber laser mode-locking,” Optics Express, 2012, 20(5): 5652–5657.

    ADS  Article  Google Scholar 

  47. [47]

    J. Kou, J. Chen, Y. Chen, F. Xu, and Y. Lu, “Platform for enhanced light-graphene interaction length and miniaturizing fiber stereo devices,” Optica, 2014, 1(5): 207–310.

    Article  Google Scholar 

  48. [48]

    C. Liu, B. Xu, L. Zhou, Z. Sun, H. Mao, J. Zhao, et al., “Graphene oxide functionalized long period fiber grating for highly sensitive hemoglobin detection,” Sensors and Actuators B: Chemical, 2018, 261: 91–96.

    Article  Google Scholar 

  49. [49]

    M. Gorji, A. Sadeghianmaryan, H. Rajabinejad, S. Nasherolahkam, and X. Chen, “Development of highly pH-sensitive hybrid membranes by simultaneous electrospinning of amphiphilic nanofibers reinforced with graphene oxide,” Journal of Functional Biomaterials, 2019, 10(2): 23.

    Article  Google Scholar 

  50. [50]

    M. B. Hossain, M. M. Islam, L. F. Abdulrazak, M. M. Rana, T. B. A. Akib, and M. Hassan, “Graphene-coated optical fiber SPR biosensor for BRCA1 and BRCA2 breast cancer biomarker detection: a numerical design-based analysis,” Photonic Sensors, 2020, 10(1): 67–79.

    ADS  Article  Google Scholar 

  51. [51]

    A. Syuhada, M. S. Shamsudin, S. Daud, G. Krishnan, S. W. Harun, and M. S. Abd Aziz, “Single-mode modified tapered fiber structure functionalized with GO-PVA composite layer for relative humidity sensing,” Photonic Sensors, DOI:

  52. [52]

    A. Zhang, Y. Wu, B. Yao, and Y. Gong, “Optimization study on graphene-coated microfiber Bragg grating structures for ammonia gas sensing,” Photonic Sensors, 2015, 5(1): 84–90.

    ADS  Article  Google Scholar 

  53. [53]

    B. Yao, Y. Wu, Y. Chen, X. Liu, Y. Gong, and Y. Rao, “Graphene-based microfiber gas sensor,” in OFS2012 22nd International Conference on Optical Fiber Sensor, Beijing, 2012, pp. 8421CD-1-8421CD-4.

  54. [54]

    B. Yao, Y. Wu, Y. Cheng, A. Zhang, Y. Gong, Y. J. Rao, et al., “All-optical Mach-Zehnder interferometric NH3 gas sensor based on graphene/microfiber hybrid waveguide,” Sensors and Actuators B: Chemical, 2014, 194: 142–148.

    Article  Google Scholar 

  55. [55]

    B. Yao, Y. Wu, A. Zhang, F. Wang, Y. Rao, Y. Gong, et al., “Graphene Bragg gratings on microfiber,” Optics Express, 2014, 22(20): 23829–23835.

    ADS  Article  Google Scholar 

  56. [56]

    B. Yao, Y. Wu, A. Zhang, Y. Rao, Z. Wang, Y. Cheng, et al., “Graphene enhanced evanescent field in microfiber multimode interferometer for highly sensitive gas sensing,” Optics Express, 2014, 22(23): 28154–28162.

    ADS  Article  Google Scholar 

  57. [57]

    Y. Wu, B. Yao, A. Zhang, X. Cao, Z. Wang, Y. Rao, et al., “Graphene-based D-shaped fiber multicore mode interferometer for chemical gas sensing,” Optics Letters, 2014, 39(20): 6030–6033.

    ADS  Article  Google Scholar 

  58. [58]

    X. Feng, W. Feng, C. Tao, D. Deng, X. Qin, and R. Chen, “Hydrogen sulfide gas sensor based on graphene-coated tapered photonic crystal fiber interferometer,” Sensors and Actuators B: Chemical, 2017, 247: 540–545.

    Article  Google Scholar 

  59. [59]

    D. Pawar, B. V. B. Rao, and S. N. Kale, “Fe3O4-decorated graphene assembled porous carbon nanocomposite for ammonia sensing: study using an optical fiber Fabry-Perot interferometer,” Analyst, 2018, 143(8): 1890–1898.

    ADS  Article  Google Scholar 

  60. [60]

    S. Sridevi, K. S. Vasu, N. Bhat, S. Asokan, and A. K. Sood, “Ultra sensitive NO2 gas detection using the reduced graphene oxide coated etched fiber Bragg gratings,” Sensors and Actuators B: Chemical, 2016, 223: 481–486.

    Article  Google Scholar 

  61. [61]

    Y. Zhang, Y. Chen, K. Zhou, C. Liu, J. Zeng, H. Zhang, et al., “Improving gas sensing properties of graphene by introducing dopants and defects: a first-principles study,” Nanotechnology, 2009, 20(18): 185504.

    ADS  Article  Google Scholar 

  62. [62]

    C. Yu, Y. Wu, X. Liu, F. Fu, Y. Gong, Y. J. Rao, et al., “Miniature fiber-optic NH3 gas sensor based on Pt nanoparticle-incorporated graphene oxide,” Sensors and Actuators B: Chemical, 2017, 244: 107–113.

    Article  Google Scholar 

  63. [63]

    Y. Wang, C. Shen, W. Lou, and F. Shentu, “Fiber optic humidity sensor based on the graphene oxide/PVA composite film,” Optics Communications, 2016, 372: 229–234.

    ADS  Article  Google Scholar 

  64. [64]

    H. Fu, Y. Jiang, J. Ding, J. Zhang, M. Zhang, Y. Zhu, et al., “Zinc oxide nanoparticle incorporated graphene oxide as sensing coating for interferometric optical microfiber for ammonia gas detection,” Sensors and Actuators B: Chemical, 2018, 254: 239–247.

    Article  Google Scholar 

  65. [65]

    J. Zhang, H. Fu, J. Ding, M. Zhang, and Y. Zhu, “Graphene-oxide-coated interferometric optical microfiber ethanol vapor sensor,” Applied Optics, 2017, 56(31): 8828–8831.

    ADS  Article  Google Scholar 

  66. [66]

    S. Sridevi, K. S. Vasu, S. Asokan, and A. K. Sood, “Sensitive detection of C-reactive protein using optical fiber Bragg gratings,” Biosensors and Bioelectronics, 2015, 65: 251–256.

    Article  Google Scholar 

  67. [67]

    H. Qiu, S. Gao, P. Chen, Z. Li, X. Liu, C. Zhang, et al., “Evanescent wave absorption sensor based on tapered multimode fiber coated with monolayer graphene film,” Optics Communications, 2016, 366: 275–281.

    ADS  Article  Google Scholar 

  68. [68]

    V. Semwal and B. D. Gupta, “LSPR- and SPR-based fiber-optic cholesterol sensor using immobilization of cholesterol oxidase over silver nanoparticles coated graphene oxide nanosheets,” IEEE Sensors Journal, 2017, 18(3): 1039–1046.

    ADS  Article  Google Scholar 

  69. [69]

    P. Zhang, B. Lu, Y. Sun, H. Yu, K. Xu, and D. Li, “Side-polished flexible SPR sensor modified by graphene with in situ temperature self-compensation,” Biomedical Optics Express, 2019, 10(1): 215–225.

    Article  Google Scholar 

  70. [70]

    H. Yu, Y. Chong, P. Zhang, J. Ma, and D. Li, “A D-shaped fiber SPR sensor with a composite nanostructure of MoS2-graphene for glucose detection,” Talanta, 2020, 219: 121324.

    Article  Google Scholar 

  71. [71]

    A. K. Sharma and J. Gupta, “Graphene based chalcogenide fiber-optic evanescent wave sensor for detection of hemoglobin in human blood,” Optical Fiber Technology, 2018, 41: 125–130.

    ADS  Article  Google Scholar 

  72. [72]

    Q. Wang and B. Wang, “Sensitivity enhanced SPR immunosensor based on graphene oxide and SPA co-modified photonic crystal fiber,” Optics & Laser Technology, 2018, 107: 210–215.

    ADS  Article  Google Scholar 

  73. [73]

    Q. Wang and B. T. Wang, “Surface plasmon resonance biosensor based on graphene oxide/silver coated polymer cladding silica fiber,” Sensors and Actuators B: Chemical, 2018, 275: 332–338.

    Article  Google Scholar 

  74. [74]

    F. Esposito, L. Sansone, C. Taddei, S. Campopiano, M. Giordano, and A. Iadicicco, “Ultrasensitive biosensor based on long period grating coated with polycarbonate-graphene oxide multilayer,” Sensors and Actuators B: Chemical, 2018, 274: 517–526.

    Article  Google Scholar 

  75. [75]

    J. Zhou, Y. Huang, C. Chen, A. Xiao, T. Guo, and B. O. Guan, “Improved detection sensitivity of γ-aminobutyric acid based on graphene oxide interface on an optical microfiber,” Physical Chemistry Chemical Physics, 2018, 20(20): 14117–14123.

    Article  Google Scholar 

  76. [76]

    A. Aziz, H. N. Lim, S. H. Girei, M. H. Yaacob, M. A. Mahdi, N. M. Huang, et al., “Silver/graphene nanocomposite-modified optical fiber sensor platform for ethanol detection in water medium,” Sensors and Actuators B: Chemical, 2015, 206: 119–125.

    Article  Google Scholar 

  77. [77]

    B. Yao, Y. Wu, D. J. Webb, J. Zhou, Y. Rao, A. Pospori, et al., “Graphene-based D-shaped polymer FBG for highly sensitive erythrocyte detection,” IEEE Photonics Technology Letters, 2015, 27(22): 2399–2402.

    ADS  Article  Google Scholar 

  78. [78]

    J. K. Nayak, P. Parhi, and R. Jha, “Graphene oxide encapsulated gold nanoparticle based stable fibre optic sucrose sensor,” Sensors and Actuators B: Chemical, 2015, 221: 835–841.

    Article  Google Scholar 

  79. [79]

    W. Hu, Y. Huang, C. Chen, Y. Liu, T. Guo, and B. O. Guan, “Highly sensitive detection of dopamine using a graphene functionalized plasmonic fiber-optic sensor with aptamer conformational amplification,” Sensors and Actuators B: Chemical, 2018, 264: 440–447.

    Article  Google Scholar 

  80. [80]

    B. Yao, S. W. Huang, Y. Liu, A. K. Vinod, C. Choi, M. Hoff, et al., “Gate-tunable frequency combs in graphene-nitride microresonators,” Nature, 2018, 558(7710): 410–414.

    ADS  Article  Google Scholar 

  81. [81]

    H. Chen, Q. Ji, H. Wang, Q. Yang, Q. Cao, Q. Gong, et al., “Chaos-assisted two-octave-spanning microcombs,” Nature Communications, 2020, 11(1): 1–6.

    ADS  Article  Google Scholar 

  82. [82]

    J. Zhang, B. Peng, Ş. K. Özdemir, K. Pichler, D. O. Krimer, G. Zhao, et al., “A phonon laser operating at an exceptional point,” Nature Photonics, 2018, 12(8): 479–484.

    ADS  Article  Google Scholar 

  83. [83]

    W. Chen, Ş. K. Özdemir, G. Zhao, J. Wiersig, and L. Yang, “Exceptional points enhance sensing in an optical microcavity,” Nature, 2017, 548(7666): 192–196.

    ADS  Article  Google Scholar 

  84. [84]

    D. Rodrigo, O. Limaj, D. Janner, D. Etezadi, F. J. Garcia De Abajo, V. Pruneri, et al., “Mid-infrared plasmonic biosensing with graphene,” Science, 2015, 349(6244): 165–168.

    ADS  Article  Google Scholar 

  85. [85]

    H. Wu, Z. Wang, F. Peng, Z. Peng, X. Li, Y. Wu, et al., “Field test of a fully distributed fiber optic intrusion detection system for long-distance security monitoring of national borderline,” in OFS2014 23rd International Conference on Optical Fiber Sensors, Spain, June 2, 2014, pp. 915790.

  86. [86]

    Z. Wang, J. Zeng, J. Li, F. Peng, L. Zhang, Y. Zhou, et al., “175 km phase-sensitive OTDR with hybrid distributed amplification,” in OFS2014 23rd International Conference on Optical Fiber Sensors, Spain, June 2, 2014, pp. 9157D5.

  87. [87]

    H. Wu, Y. Qian, W. Zhang, and C. Tang, “Feature extraction and identification in distributed optical-fiber vibration sensing system for oil pipeline safety monitoring,” Photonic Sensors, 2017, 7(4): 305–310.

    ADS  Article  Google Scholar 

  88. [88]

    T. Tan, C. Peng, Z. Yuan, X. Xie, H. Liu, Z. Xie, et al., “Predicting Kerr soliton combs in microresonators via deep neural networks,” Journal of Lightwave Technology, 2020, 38(23): 6591–6599.

    ADS  Article  Google Scholar 

  89. [89]

    R. Gao, D. F. Lu, J. Cheng, Y. Jiang, L. Jiang, and Z. Qi, “Humidity sensor based on power leakage at resonance wavelengths of a hollow core fiber coated with reduced graphene oxide,” Sensors and Actuators B: Chemical, 2016, 222: 618–624.

    Article  Google Scholar 

  90. [90]

    Y. Xiao, J. Yu, L. Shun, S. Tan, X. Cai, Y. Luo, et al., “Reduced graphene oxide for fiber-optic toluene gas sensing,” Optics Express, 2016, 24(25): 28290–28302.

    ADS  Article  Google Scholar 

  91. [91]

    N. M. Y. Zhang, K. Li, P. P. Shum, X. Yu, S. Zeng, Z. Wu, et al., “Hybrid graphene/gold plasmonic fiber-optic biosensor,” Advanced Materials Technologies, 2017, 2(2): 1600185.

    Article  Google Scholar 

Download references

Author information



Corresponding authors

Correspondence to Yu Wu or Baicheng Yao or Yunjiang Rao.

Rights and permissions

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (, which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

An, N., Qin, C., Li, Y. et al. Graphene-Fiber Biochemical Sensors: Principles, Implementations, and Advances. Photonic Sens 11, 123–139 (2021).

Download citation


  • Graphene
  • fiber sensors
  • biochemical sensing