High-Performance Distributed Brillouin Optical Fiber Sensing

Abstract

This paper reviews the recent advances on the high-performance distributed Brillouin optical fiber sensing, which include the conventional distributed Brillouin optical fiber sensing based on backward stimulated Brillouin scattering and two other novel distributed sensing mechanisms based on Brillouin dynamic grating and forward stimulated Brillouin scattering, respectively. As for the conventional distributed Brillouin optical fiber sensing, the spatial resolution has been improved from meter to centimeter in the time-domain scheme and to millimeter in the correlation-domain scheme, respectively; the measurement time has been reduced from minute to millisecond and even to microsecond; the sensing range has reached more than 100 km. Brillouin dynamic grating can be used to measure the birefringence of a polarization-maintaining fiber, which has been explored to realize distributed measurement of temperature, strain, salinity, static pressure, and transverse pressure. More recently, forward stimulated Brillouin scattering has gained considerable interest because of its capacity to detect mechanical features of materials surrounding the optical fiber, and remarkable works using ingenious schemes have managed to realize distributed measurement, which opens a brand-new way to achieve position-resolved substance identification.

References

  1. [1]

    A. Barrias, J. R. Casaas, and S. Villalba, “A review of distributed optical fiber sensors for civil engineering applications,” Sensors, 2016, 16(5): 748.

    Article  Google Scholar 

  2. [2]

    X. Bao and L. Chen, “Recent progress in Brillouin scattering based fiber sensors,” Sensors, 2011, 11(4): 4152–4187.

    Article  Google Scholar 

  3. [3]

    S. Diakaridia, Y. Pan, P. Xu, D. Zhou, B. Wang, L. Teng, et al., “Detecting cm-scale hot spot over 24-km-long single-mode fiber by using differential pulse pair BOTDA based on double-peak spectrum,” Optics Express, 2017, 25(15): 17727–17736.

    ADS  Article  Google Scholar 

  4. [4]

    K. Hotate and M. Tanaka, “Distributed fiber Brillouin strain sensing with 1-cm spatial resolution by correlation-based continuous-wave technique,” IEEE Photonics Technology Letters, 2002, 14(2): 179–181.

    ADS  Article  Google Scholar 

  5. [5]

    X. Bao, A. Brown, M. DeMerchant, and J. Smith, “Characterization of the Brillouin-loss spectrum of single-mode fibers by use of very short (<10-ns) pulses,” Optics Letters, 1999, 24(8): 510.

    ADS  Article  Google Scholar 

  6. [6]

    A. W. Brown, B. G. Colpitts, and K. Brown, “Distributed sensor based on dark-pulse Brillouin scattering,” IEEE Photonics Technology Letters, 17(7): 1501–1503.

  7. [7]

    K. Kishida, C. Li, and Nishiguchi, “Pulse pre-pump method for cm-order spatial resolution of BOTDA,” SPIE, 5855: 559–562.

  8. [8]

    W. Li, X. Bao, Y. Li, and L. Chen, “Differential pulse-width pair BOTDA for high spatial resolution sensing,” Optics Express, 2008, 16(26): 21616–21625.

    ADS  Article  Google Scholar 

  9. [9]

    Y. Dong, H. Zhang, L. Chen, and X. Bao, “2cm spatial-resolution and 2 km range Brillouin optical fiber sensor using a transient differential pulse pair,” Applied Optics, 2012, 51(9): 1229–1235.

    ADS  Article  Google Scholar 

  10. [10]

    A. Dominguez-Lopez, M. A. Soto, S. Martin-Lopez, L. Thevenaz, and M. Gonzalez-Herraez, “Resolving 1 million sensing points in an optimized differential time-domain Brillouin sensor,” Optics Letters, 2017, 42(10): 1903.

    ADS  Article  Google Scholar 

  11. [11]

    S. M. Foaleng, M. Tur, J. C. Beugnot, and L. Thevenaz, “High spatial and spectral resolution long-range sensing using brillouin echoes,” Journal of Lightwave Technology, 2011, 28(20): 2993–3003.

    ADS  Article  Google Scholar 

  12. [12]

    A. Zadok, Y. Antman, N. Primerov, A. Denisov, J. Sancho, and L. Thevenaz, “Random-access distributed fiber sensing laser,” Laser & Photonics Reviews, 2012, 6(5): L1–L5.

    ADS  Article  Google Scholar 

  13. [13]

    R. Cohen, Y. London, Y. Antman, and A. Zadok, “Brillouin optical correlation domain analysis with 4 millimeter resolution based on amplified spontaneous emission,” Optics Express, 2014, 22(10): 12070–12078.

    ADS  Article  Google Scholar 

  14. [14]

    D. Ba, Y. Li, X. Zhang, J. Yan, and Y. Dong, “Phase-coded Brillouin optical correlation domain analysis with 2-mm resolution based on phase-shift keying,” Optics Express, 2019, 27(25): 36197.

    ADS  Article  Google Scholar 

  15. [15]

    J. Zhang, C. Feng, M. Zhang, Y. Liu, C. Wu, and Y. Wang, “Brillouin optical correlation domain analysis based on chaotic laser with suppressed time delay signature,” Optics Express, 2018, 26(6): 6962–6972.

    ADS  Article  Google Scholar 

  16. [16]

    K. Y. Song, Z. He, and K. Hotate, “Distributed strain measurement with millimeter-order spatial resolution based on brillouin optical correlation domain analysis and beat lock-in detection scheme,” in 18th International Conference Optical Fiber Sensors, Mexico, 2006, ThC2.

  17. [17]

    H. Zhang, D. Zhou, B. Wang, C. Pang, P. Xu, T. Jiang, et al., “Recent progress in fast distributed Brillouin optical fiber sensing,” Applied Science, 2018, 8: 1820.

    Article  Google Scholar 

  18. [18]

    C. Jin, N. Guo, Y. Feng, L. Wang, H. Liang, J. Li, et al., “Scanning-free BOTDA based on ultra-fine digital optical frequency comb,” Optics Express, 2015, 23(4): 5277–5284.

    ADS  Article  Google Scholar 

  19. [19]

    J. Fang, P. Xu, Y. Dong, and W. Shieh, “Single-shot distributed Brillouin optical time domain analyzer,” Optics Express, 2017, 25(13): 15188–15198.

    ADS  Article  Google Scholar 

  20. [20]

    D. Zhou, Y. Dong, and J. Yao, “Truly distributed and ultra-fast microwave photonic fiber-optic sensor,” Journal of Lightwave Technology, 2020, 38(15): 4150–4159.

    Google Scholar 

  21. [21]

    C. Jin, L. Wang, Y. Chen, N. Guo, W. Chung, H. Au, et al., “Single-measurement digital optical frequency comb based phase-detection Brillouin optical time domain analyzer,” Optics Express, 2017, 25(8): 9213–9224.

    ADS  Article  Google Scholar 

  22. [22]

    Z. Liang, J. Pan, S. Gao, Q. Sui, Y. Feng, F. Li, et al., “Spatial resolution improvement of single-shot digital optical frequency comb-based Brillouin optical time domain analysis utilizing multiple pump pulses,” Optics Letters, 2018, 43(15): 3534–3537.

    ADS  Article  Google Scholar 

  23. [23]

    R. Bernini, A. Minardo, and L. Zeni, “Dynamic strain measurement in optical fibers by stimulated Brillouin scattering,” Optics Letters, 2009, 34(17): 2613–2615.

    ADS  Article  Google Scholar 

  24. [24]

    Y. Peled, A. Motil, L. Yaron, and M. Tur, “Slope-assisted fast distributed sensing in optical fibers with arbitrary Brillouin profile,” Optics Express, 2011, 19(21): 19845–19854.

    ADS  Article  Google Scholar 

  25. [25]

    A. Motil, O. Danon, Y. Peled, and M. Tur, “Pump-power-independent double slope-assisted distributed and fast Brillouin fiber-optic sensor,” IEEE Photonics Technology Letters, 2014, 26(8): 797–800.

    ADS  Article  Google Scholar 

  26. [26]

    D. Ba, B. Wang, D. Zhou, M. Yin, Y. Dong, H. Li, et al., “Distributed measurement of dynamic strain based on multi-slope assisted fast BOTDA,” Optics Express, 2016, 24(9): 9781–9793

    ADS  Article  Google Scholar 

  27. [27]

    X. B. Tu, H. Luo, Q. Sun, X. Y. Hu, and Z. Meng, “Performance analysis of slope-assisted dynamic BOTDA based on Brillouin gain or phase-shift in optical fibers,” Journal of Optics, 2015, 17(10): 105503.

    ADS  Article  Google Scholar 

  28. [28]

    J. Urricelqui, A. Zornoza, M. Sagues, and A. Loayssa, “Dynamic BOTDA measurements based on Brillouin phase-shift and RF demodulation,” Optics Express, 2012, 20(24): 26942–26949.

    ADS  Article  Google Scholar 

  29. [29]

    D. Zhou, Y. Dong, B. Wang, T. Jiang, D. Ba, P. Xu, et al., “Slope-assisted BOTDA based on vector SBS and frequency-agile technique for wide-strain-range dynamic measurements,” Optics Express, 2017, 25(3): 1889–1902

    ADS  Article  Google Scholar 

  30. [30]

    Y. Peled, A. Motil, and M. Tur, “Fast Brillouin optical time domain analysis for dynamic sensing,” Optics Express, 2012, 20(8): 8584–8591.

    ADS  Article  Google Scholar 

  31. [31]

    D. Ba, D. Zhou, B. Wang, Z. Lu, Z. Fan, Y. Dong, et al., “Dynamic distributed Brillouin optical fiber sensing based on dual-modulation by combining single frequency modulation and frequency-agility modulation,” IEEE Photonics Technology Letters, 2017, 9(3): 1–8

    Article  Google Scholar 

  32. [32]

    Q. Chu, B. Wang, H. Wang, D. Ba, and Y. Dong, “Fast Brillouin optical time-domain analysis using frequency-agile and compressed sensing,” Optics Letters, 2020, 45(15): 4365–4368.

    ADS  Article  Google Scholar 

  33. [33]

    B. Wang, Z. Hua, C. Pang, D. Zhou, D. Ba, D. Lin, et al., “Fast Brillouin optical time-domain reflectometry based on the frequency-agile technique,” Journal of Lightwave Technology, 2020, 38(4): 946–952

    ADS  Article  Google Scholar 

  34. [34]

    D. Zhou, Y. Dong, B. Wang, C. Pang, D. Ba, H. Zhang, et al., “Single-shot BOTDA based on an optical chirp chain probe wave for distributed ultrafast measurement,” Light: Science & Applications, 2018, 7(1): 32.

    ADS  Article  Google Scholar 

  35. [35]

    Y. Dong, B. Wang, C. Pang, D. Zhou, D. Ba, H. Zhang, et al., “150 km fast BOTDA based on the optical chirp chain probe wave and Brillouin loss scheme,” Optics Letters, 2018, 43(19): 4679–4682

    ADS  Article  Google Scholar 

  36. [36]

    B. Wang, B. Fan, D. Zhou, C. Pang, Y. Li, D. Ba, et al., “High-performance optical chirp chain BOTDA by using a pattern recognition algorithm and the differential pulse-width pair technique,” Photonics Research, 2019, 7(6): 652–658.

    Article  Google Scholar 

  37. [37]

    D. Ba, B. Wang, T. Li, Y. Li, D. Zhou, and Y. Dong, “Fast Brillouin optical time-domain reflectometry using the optical chirp chain reference wave,” Optics Letters, 2020, 45(19): 5460–5463.

    ADS  Article  Google Scholar 

  38. [38]

    J. Zhang, H. Zheng, H. Wu, N. Guo, G. Yin, and T. Zhu, “Vector optical-chirp-chain Brillouin optical time-domain analyzer based on complex principal component analysis,” Optics Express, 2020, 28(20): 28831–28842.

    ADS  Article  Google Scholar 

  39. [39]

    Y. Dong and X. Bao, “Impacts of Kerr effect and fiber dispersion on long-range Brillouin optical time-domain analysis systems,” in International Conference on Optical Fiber Sensor, China, 2012, pp. 84219Z-1–84219Z-4.

  40. [40]

    K. Tai, A. Hasegawa, and A. Tomita, “Observation of modulational instability in optical fibers,” Physical Review Letters, 1986, 56(2): 135.

    ADS  Article  Google Scholar 

  41. [41]

    A. Dominguez-Lopez, X. Angulo-Vinuesa, A. Lopez-Gil, S. Martin-Lopez, and M. Gonzalez-Herraez, “Non-local effects in dual-probe-sideband Brillouin optical time domain analysis,” Optics Express, 2015, 23(8): 10341–10352.

    ADS  Article  Google Scholar 

  42. [42]

    L. Thevenaz, S. F. Mafang, and J. Lin, “Effect of pulse depletion in a Brillouin optical time-domain analysis system,” Optics Express, 2013, 21(12): 14017–14035.

    ADS  Article  Google Scholar 

  43. [43]

    Y. Dong, L. Chen, and X. Bao, “System optimization of a long-range Brillouin-loss-based distributed fiber sensor,” Applied Optics, 2010, 49(27): 5020–5025.

    ADS  Article  Google Scholar 

  44. [44]

    X. H. Jia, Y. J. Rao, L. Chen, C. Zhang, and Z. L. Ran, “Enhanced sensing performance in long distance Brillouin optical time-domain analyzer based on Raman amplification: theoretical and experimental investigation,” Journal of Lightwave Technology, 2010, 28: 1624–1630.

    ADS  Article  Google Scholar 

  45. [45]

    M. A. Soto, G. Bolognini, and F. D. Pasquale, “Optimization of long range BOTDA sensors with high resolution using first-order bi-directional Raman amplification,” Optics Express, 2011, 19(5): 4444–4457.

    ADS  Article  Google Scholar 

  46. [46]

    X. Angulo-Vinuesa, S. Martin-Lopez, J. Nuño, P. Corredera, J. D. Aniacastañon, L. Thévenaz, et al., “Raman-assisted Brillouin distributed temperature sensor over 100 km featuring 2 m resolution and 1.2 °C uncertainty,” Journal of Lightwave Technology, 2012, 30(8):1060–1065

    ADS  Article  Google Scholar 

  47. [47]

    Y. Dong, L. Chen, and X. Bao, “Time-division multiplexing-based BOTDA over 100km sensing length,” Optics Letters, 2011, 36(2): 277–279.

    ADS  Article  Google Scholar 

  48. [48]

    Y. Dong, L. Chen, and X. Bao, “Extending the sensing range of Brillouin optical time-domain analysis combining frequency-division multiplexing and in-line EDFAs,” Journal of Lightwave Technology, 2012, 30(8): 1161–1167.

    ADS  Article  Google Scholar 

  49. [49]

    A. M. Soto, G. Bolognini, F. D. Pasquale, and L. Thévenaz, “Simplex-coded BOTDA fiber sensor with 1 m spatial resolution over a 50 km range,” Optics Letters, 2010, 35(2): 259–261.

    ADS  Article  Google Scholar 

  50. [50]

    A. M. Soto, G. Bolognini, and F. D. Pasquale, “Long-range simplex-coded BOTDA sensor over 120 km distance employing optical preamplification,” Optical Letters, 2011, 36(2): 232–234.

    ADS  Article  Google Scholar 

  51. [51]

    A. M. Soto, M. Taki, and G. Bolognini, “Simplex-coded BOTDA sensor over 120-km SMF with 1-m spatial resolution assisted by optimized bidirectional Raman amplification,” IEEE Photonics Technology Letters, 2012, 24(20): 1823–1826.

    ADS  Article  Google Scholar 

  52. [52]

    J. J. Mompó, J. Urricelqui, and A. Loayssa, “Brillouin optical time-domain analysis sensor with pump pulse amplification,” Optics Express, 2016, 24(12): 12672–12681.

    ADS  Article  Google Scholar 

  53. [53]

    M. A. Soto, J. A. Ramírez, and L. Thévenaz, “Intensifying the response of distributed optical fibre sensors using 2D and 3D image restoration,” Nature Communications, 2016, 7(1): 10870.

    ADS  Article  Google Scholar 

  54. [54]

    S. Le Floch, F. Sauser, M. Llera and E. Rochat, “Novel Brillouin optical time-domain analyzer for extreme sensing range using high-power flat frequency-coded pump pulses,” Journal of Lightwave Technology, 2014, 33(12): 2623–2627.

    ADS  Article  Google Scholar 

  55. [55]

    X. H. Jia, H. Q. Chang, K. Lin, C. Xu, and J. G. Wu, “Frequency-comb-based BOTDA sensors for high-spatial-resolution/long-distance sensing,” Optics Express, 2017, 25(6): 6997–7007.

    ADS  Article  Google Scholar 

  56. [56]

    M. A. Soto, J. A. Ramírez, and L. Thévenaz, “Optimizing image denoising for long-range Brillouin distributed fiber sensing,” Journal of Lightwave Technology, 2017, 36(4): 1168–1177.

    ADS  Article  Google Scholar 

  57. [57]

    B. Wang, L. Wang, C. Yu, and C. Lu, “Long-distance BOTDA sensing systems using video-BM3D denoising for both static and slowly varying environment,” Optics Express, 2019, 27(25): 36100–36113.

    ADS  Article  Google Scholar 

  58. [58]

    X. Sun, Z. Yang, X. Hong, S. Zaslawski, S. Wang, M. A. Soto, and L. Thévenaz, “Genetic-optimised aperiodic code for distributed optical fibre sensors,” Nature Communications, 2020, 11(1): 1–11.

    Article  Google Scholar 

  59. [59]

    Z. Zhu, D. J. Gauthier, and R. W. Boyd, “ Stored light in an optical fiber via stimulated Brillouin scattering,” Science, 2007, 318(5857): 1748–1750.

    ADS  Article  Google Scholar 

  60. [60]

    Y. Dong, L. Chen, and X. Bao, “Truly distributed birefringence measurement of polarization-maintaining fibers based on transient Brillouin grating,” Optics Letters, 2010, 35(2): 193–195.

    ADS  Article  Google Scholar 

  61. [61]

    Y. Dong, H. Zhang, Z. Lu, L. Chen, and X. Bao, “Long-Range and high-spatial-resolution distributed birefringence measurement of a polarization-maintaining fiber based on Brillouin dynamic grating,” Journal of Lightwave Technology, 2013, 31(16): 2681–2686.

    ADS  Article  Google Scholar 

  62. [62]

    Y. H. Kim and K. Y. Song, “Mapping of intermodal beat length distribution in an elliptical-core two-mode fiber based on Brillouin dynamic grating,” Optics Express, 2014, 22: 17292–17302.

    ADS  Article  Google Scholar 

  63. [63]

    Y. H. Kim and K. Y. Song, “Characterization of nonlinear temperature dependence of Brillouin dynamic grating spectra in polarization-maintaining fibers,” Journal of Lightwave Technology, 2015, 33(23): 4922–4927.

    ADS  Article  Google Scholar 

  64. [64]

    A. Li, Q. Hu, X. Chen, B. Y. Kim, and W. Shieh, “Characterization of distributed modal birefringence in a few-mode fiber based on Brillouin dynamic grating,” Optical Letters, 2014, 39: 3153–3156.

    ADS  Article  Google Scholar 

  65. [65]

    T. Jiang, D. Zhou, M. Xia, L. Teng, D. Ba, and Y. Dong, “Distributed birefringence measurement of a polarization-maintaining fiber with an extended range based on an enhanced Brillouin dynamic grating,” IEEE Photonics Journal, 2020, 12(4): 7102507.

    Article  Google Scholar 

  66. [66]

    V. P. Kalosha, W. Li, F. Wang, L. Chen, and X. Bao, “Frequency-shifted light storage via stimulated Brillouin scattering in optical fibers,” Optical Letters, 2008, 33: 2848–2850.

    ADS  Article  Google Scholar 

  67. [67]

    K. Y. Song, K. Lee, and S. B. Lee, “Tunable optical delays based on Brillouin dynamic grating in optical fibers,” Optics Express, 2009, 17(12): 10344–10349.

    ADS  Article  Google Scholar 

  68. [68]

    S. Chin and L. Thevenaz, “Tunable photonic delay lines in optical fibers,” Laser & Photonics Reviews, 2012, 6(6): 724–738.

    ADS  Article  Google Scholar 

  69. [69]

    M. Santagiustina, S. Chin, N. Primerov, L. Ursini, and L. Thevenaz, “All-optical signal processing using dynamic Brillouin gratings,” Scientific Reports, 2013, 3: 1594.

    ADS  Article  Google Scholar 

  70. [70]

    J. Sancho, N. Primerov, S. Chin, Y. Antman, A. Zadok, S. Sales, et al., “Tunable and reconfigurable multi-tap microwave photonic filter based on dynamic Brillouin gratings in fibers,” Optics Express, 2012, 20: 6157–6162.

    ADS  Article  Google Scholar 

  71. [71]

    L. Ursini and M. Santagiustina, “Applications of the dynamic Brillouin gratings to ultrawideband communications,” IEEE Photonics Technology Letters, 25(14): 1347–1349.

  72. [72]

    J. J. Guo, M. Li, Y. Deng, N. Huang, J. Liu, and N. Zhu, “Multichannel optical filters with an ultranarrow bandwidth based on sampled Brillouin dynamic gratings,” Optics Express, 2014, 22(4): 4290–4300.

    ADS  Article  Google Scholar 

  73. [73]

    Y. Dong, T. Jiang, L. Teng, H. Zhang, L. Chen, and X. Bao, “Sub-MHz ultrahigh-resolution optical spectrometry based on Brillouin dynamic gratings,” Optics Letters, 2014, 39(10): 2967–2970.

    ADS  Article  Google Scholar 

  74. [74]

    Y. Dong, L. Teng, P. Tong, T. Jiang, H. Zhang, T. Zhu, et al., “High-sensitivity distributed transverse load sensor with an elliptical-core fiber based on Brillouin dynamic gratings,” Optical Letters, 2015, 40(21): 5003–5006.

    ADS  Article  Google Scholar 

  75. [75]

    L. Teng, H. Zhang, Y. Dong, D. Zhou, T. Jiang, W. Gao, et al., “Temperature-compensated distributed hydrostatic pressure sensor with a thin-diameter polarization- maintaining photonics crystal fiber based on Brillouin dynamic gratings,” Optical Letters, 2016, 41(18): 4413–4416.

    ADS  Article  Google Scholar 

  76. [76]

    H. Zhang, L. Teng, and Y. Dong, “Distributed salinity sensor with a polyimide-coated photonics crystal fiber based on Brillouin dynamic grating,” Journal of Lightwave Technology, 2020, 99: 5219–5224.

    ADS  Article  Google Scholar 

  77. [77]

    Y. Dong, X. Bao, and L. Chen, “Distributed temperature sensing based on birefringence effect on transient Brillouin grating in a polarization-maintaining photonic crystal fiber,” Optical Letters, 2009, 34(17): 2590–2592.

    ADS  Article  Google Scholar 

  78. [78]

    Y. Dong, L. Chen, and X. Bao, “High-spatial-resolution time domain simultaneous strain and temperature sensor using Brillouin scattering and birefringence in a polarization- maintaining fiber,” IEEE Photonics Technology Letters, 2010, 22(18): 1364–1366.

    ADS  Article  Google Scholar 

  79. [79]

    K. Y. Song, S. Chin, N. Primerov, and L. Thevenaz, “Time-domain distributed fiber sensor with 1 cm spatial resolution based on Brillouin dynamic grating,” Journal of Lightwave Technology, 2010, 28(14): 2062–2067.

    ADS  Article  Google Scholar 

  80. [80]

    S. Chin, N. Primerov, and L. Thevenaz, “Sub-centimeter spatial resolution in distributed fiber sensing based on dynamic Brillouin grating in optical fibers,” IEEE Sensors Journal, 2012, 12(1): 189–194.

    ADS  Article  Google Scholar 

  81. [81]

    W. Zou, Z. He, and K. Hotate, “Demonstration of Brillouin distributed discrimination of strain and temperature using a polarization-maintaining optical fiber,” IEEE Photonics Technology Letters, 2010, 22(8): 526–528.

    ADS  Article  Google Scholar 

  82. [82]

    A. Bergman, L. Yaron, T. Langer, and M. Tur, “Dynamic and distributed slope-assisted fiber strain sensing based on optical time-domain analysis of Brillouin dynamic gratings,” Journal of Lightwave Technology, 2015, 33(12): 2611–2616.

    ADS  Article  Google Scholar 

  83. [83]

    M. Pang, X. Jiang, W. He, G. K. L. Wong, G. Onishchukov, N. Y. Joly, et al., “Stable subpicosecond soliton fiber laser passively mode-locked by gigahertz acoustic resonance in photonic crystal fiber core,” Optica, 2015, 2: 339–342.

    ADS  Article  Google Scholar 

  84. [84]

    N. T. Otterstrom, R. O. Behunin, E. A. Kittlaus, Z. Wang, and P. T. Rakich, “A silicon Brillouin laser,” Science, 2018, 360(6393): 1113–1116.

    ADS  MathSciNet  MATH  Article  Google Scholar 

  85. [85]

    E. A. Kittlaus, N. T. Otterstrom, P. Kharel, S. Gertler, and P. T. Rakich, “Non-reciprocal interband Brillouin modulation,” Nature Photonics, 2018, 12(10): 613–619.

    ADS  Article  Google Scholar 

  86. [86]

    A. Butsch, J. R. Koehler, R. E. Noskov, and P. S. J. Russell, “CW-pumped single-pass frequency comb generation by resonant opto-mechanical nonlinearity in dual-nanoweb fiber,” Optica, 2014, 1: 158.

    ADS  Article  Google Scholar 

  87. [87]

    K. Shiraki and M. Ohashi, “Sound velocity measurement based on guided acoustic-wave Brillouin scattering,” IEEE Photonics Technology Letters, 1992, 4: 1177–1180.

    ADS  Article  Google Scholar 

  88. [88]

    Y. Tanaka and K. Ogusu, “Temperature coefficient of sideband frequencies produced by depolarized guided acoustic-wave Brillouin scattering,” IEEE Photonics Technology Letters, 1998, 10: 1769–1771.

    ADS  Article  Google Scholar 

  89. [89]

    Y. Tanaka and K. Ogusu, “Tensile-strain coefficient of resonance frequency of depolarized guided acoustic-wave Brillouin scattering,” IEEE Photonics Technology Letters, 1999, 11(7): 865–867.

    ADS  Article  Google Scholar 

  90. [90]

    Y. Antman, A. Clain, Y. London, and A. Zadok, “Opto-mechanical sensing of liquids outside standard fibers using forward stimulated Brillouin scattering,” Optica, 2016, 3(5): 510–516.

    ADS  Article  Google Scholar 

  91. [91]

    D. M. Chow, M. A. Soto, and L. Thévenaz, “Frequency-domain technique to measure the inertial response of forward stimulated Brillouin scattering for acoustic impedance sensing,” in 2017 25th Optical Fiber Sensors Conference (OFS), South Korea, 2017, pp. 10323.

  92. [92]

    G. Bashan, H. H. Diamandi, Y. London, E. Preter, and A. Zadok, “Opto-mechanical time-domain reflectometry,” Nature Communications, 2018, 9(1): 2991.

    ADS  Article  Google Scholar 

  93. [93]

    D. M. Chow, Z. Yang, M. A. Soto, and L. Thévenaz, “Distributed forward Brillouin sensor based on local light phase recovery,” Nature Communications, 2018, 9(1): 2990.

    ADS  Article  Google Scholar 

  94. [94]

    C. Pang, Z. Hua, D. Zhou, H. Zhang, L. Chen, X. Bao, et al., “Opto-mechanical time-domain analysis based on coherent forward stimulated Brillouin scattering probing,” Optica, 2020, 7(2): 176–184.

    ADS  Article  Google Scholar 

  95. [95]

    B. Wang, Y. Dong, D. Ba, and X. Bao, “High spatial resolution: an integrative review of its developments on the Brillouin optical time-and correlation-domain analysis,” Measurement Science and Technology, 2020, 31(5): 052001.

    ADS  Article  Google Scholar 

  96. [96]

    A. W. Brown, B. G. Colpitts, and K. Brown, “Dark-pulse Brillouin optical time-domain sensor with 20 mm spatial resolution,” Journal of Lightwave Technology, 2007, 25(1): 381–386.

    ADS  Article  Google Scholar 

  97. [97]

    K. Kishida and C. H. Li, “Pulse pre-pump-BOTDA technology for new generation of distributed strain measuring system,” Structural Health Monitoring and Intelligent Infrastructure, 2005, 1: 471–477.

    Google Scholar 

  98. [98]

    J. C. Beugnot, M. Tur, S. F. Mafang, and L. Tevenaz, “Distributed Brillouin sensing with sub-meter spatial resolution: modeling and processing,” Optics Express, 2011, 19(8): 7381–7397.

    ADS  Article  Google Scholar 

  99. [99]

    K. Hotate and T. Hasegawa, “Measurement of Brillouin gain spectrum distribution along an optical fiber with a high spatial resolution using a novel correlation-based technique: demonstration of 45cm spatial resolution,” in 13th International Conference on Optical Fiber Sensors, Kyongju, 1999, pp. 337–340.

  100. [100]

    Y. Dong, D. Ba, T. Jiang, D. Zhou, H. Zhang, C. Zhu, et al., “High-spatial-resolution fast BOTDA for dynamic strain measurement based on differential double-pulse and second-order sideband of modulation,” IEEE Photonics Journal, 2013, 5(3): 2600407.

    ADS  Article  Google Scholar 

Download references

Acknowledgment

This work was funded by the National Key Scientific Instrument and Equipment Development Project of China (Grant No. 2017YFF0108700).

Author information

Affiliations

Authors

Corresponding author

Correspondence to Yongkang Dong.

Rights and permissions

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Dong, Y. High-Performance Distributed Brillouin Optical Fiber Sensing. Photonic Sens 11, 69–90 (2021). https://doi.org/10.1007/s13320-021-0616-7

Download citation

Keywords

  • Distributed sensing
  • stimulated Brillouin scattering
  • Brillouin dynamic grating
  • multi-parameter measurement