3D Printing Technology for Tapered Optical Fiber Protection With Gas Sensing Possibilities


We present a new procedure for protecting micro-optical fibers (tapered fibers) by using the 3-dimension (3D) printing technology. A standard single-mode optical fiber was tapered down to the diameter of 1 µm and embedded in a polymeric matrix obtained by an additive manufacturing routine. We show that the proposed structure protects the fiber taper against environmental humidity while keeping permeability to gas flow and the possibility of the realization of gas detection experiments. To our knowledge, this is the first time 3D printed casings were applied to protect fiber tapers from humidity deterioration. We envisage this new approach will allow the development of new fiber taper devices to better resist in humid environments.


  1. [1]

    S. Pevec and D. Donlagic, “Multiparameter fiber-optic sensors: a review,” Optical Engineering, 2019, 58(7): 072009.

    ADS  Article  Google Scholar 

  2. [2]

    P. Russell, “Photonic crystal fibers,” Science, 2003, 299(5605): 358–362.

    ADS  Article  Google Scholar 

  3. [3]

    V. Portosi, D. Laneve, M. C. Faloni, and F. Prudenzano, “Advances on photonic crystal fiber sensors and applications,” Sensors, 2019, 19(8): 1892.

    Article  Google Scholar 

  4. [4]

    S. Silva, E. G. P. Pachon, M. A. R. Franco, J. G. Hayashi, F. X. Malcata, O. Frazão, et al., “Ultrahigh-sensitivity temperature fiber sensor based on multimode interference,” Applied Optics, 2012, 51(16): 3236–3242.

    ADS  Article  Google Scholar 

  5. [5]

    A. D. Kersey, M. A. Davis, H. H. Patrick, M. LeBlanc, K. P. Koo, C. G. Askins, et al., “Fiber grating sensors,” Journal of Lightwave Technology, 1997, 15(8): 1442–1463.

    ADS  Article  Google Scholar 

  6. [6]

    J. Lou, Y. Wang, and L. Tong, “Microfiber optical sensors: a review,” Sensors, 2014, 14(4): 5823–5844.

    Article  Google Scholar 

  7. [7]

    G. Brambilla, “Optical fibre nanowires and microwires: a review,” Journal of Optics, 2010, 12(4): 043001.

    ADS  Article  Google Scholar 

  8. [8]

    R. Yang, Y. Yu, Y. Xue, C. Chen, Q. Chen, and H. Sun, “Single S-tapered fiber Mach-Zehnder interferometers,” Optics Letters, 2011, 36(23): 4482–4484.

    ADS  Article  Google Scholar 

  9. [9]

    N. Vukovic, N. G. R. Broderick, M. Petrovich, and G. Brambilla, “Novel method for the fabrication of long optical fiber tapers,” IEEE Photonics Technology Letters, 2008, 20(14): 1264–1266.

    ADS  Article  Google Scholar 

  10. [10]

    J. M. Ward, D. G. O’Shea, B. J. Shortt, M. J. Morrissey, K. Deasy, and S. G. N. Chormaic, “Heat-and-pull rig for fiber taper fabrication,” Review of Scientific Instruments, 2006, 77(8): 083105.

    ADS  Article  Google Scholar 

  11. [11]

    T. A. Birks and Y. W. Li, “The shape of fiber tapers,” Journal of Lightwave Technology, 1992, 10(4): 432–438.

    ADS  Article  Google Scholar 

  12. [12]

    C. M. B. Cordeiro, W. J. Wadsworth, T. A. Birks, and P. St. J. Russell, “Engineering the dispersion of tapered fibers for supercontinuum generation with a 1064 nm pump laser,” Optics Letters, 2005, 30(15): 1980–1982.

    ADS  Article  Google Scholar 

  13. [13]

    F. Beltrán-Mejía, J. H. Osório, C. R. Biazoli, and C. M. B. Cordeiro, “D-microfibers,” Journal of Lightwave Technology, 2013, 31(16): 3056–3061.

    Article  Google Scholar 

  14. [14]

    W. Jin, H. L. Ho, Y. C. Cao, J. Ju, and L. F. Qi, “Gas detection with micro- and nano-engineered optical fibers,” Optical Fiber Technology, 2013, 19(6): 741–759.

    ADS  Article  Google Scholar 

  15. [15]

    G. Brambilla and D. N. Payne, “The ultimate strength of glass silica nanowires,” Nano Letters, 2009, 9(2): 831–835.

    ADS  Article  Google Scholar 

  16. [16]

    N. Lou, R. Jha, J. L. Domínguez-Juárez, V. Finazzi, J. Villatoro, G. Badenes, et al., “Embedded optical micro/nano-fibers for stable devices,” Optics Letters, 2010, 35(4): 571–573.

    ADS  Article  Google Scholar 

  17. [17]

    L. Xiao, M. D. W. Grogan, W. J. Wadsworth, R. England, and T. A. Birks, “Stable low-loss optical nanofibers embedded in hydrophobic aerogel,” Optics Express, 2011, 19(2): 764–769.

    ADS  Article  Google Scholar 

  18. [18]

    L. Tong, J. Lou, R. R. Gattass, S. He, X. Chen, L. Liu, et al., “Assembly of silica nanowires on silica aerogels for microphotonic devices,” Nano Letters, 2005, 5(2): 259–262.

    ADS  Article  Google Scholar 

  19. [19]

    L. Xiao, M. D. W. Grogan, R. England, W. J. Wadsworth, and T. A. Birks, “Gas sensing with a sub-micron tapered fibre embedded in hydrophobic aerogel,” in Conference on Lasers and Electro-Optics 2010, California, May 16–21, 2010, pp. 1–3.

  20. [20]

    J. L. Gurav, I. Jung, H. Park, E. S. Kang, and D. Y. Nadargi, “Silica aerogel: synthesis and applications,” Journal of Nanomaterials, 2010, 2010: 409310.

    Article  Google Scholar 

  21. [21]

    K. Cook, J. Canning, S. Leon-Saval, Z. Reid, M. A. Hossain, J. Comatti, et al., “Air-structured optical fiber drawn from a 3D-printed preform,” Optics Letters, 2015, 40(17): 3966–3969.

    ADS  Article  Google Scholar 

  22. [22]

    K. Cook, G. Balle, J. Canning, L. Chartier, T. Athanaze, M. A. Hossain, et al., “Step-index optical fiber drawn from 3D printed preforms,” Optics Letters, 2016, 41(19): 4554–4557.

    ADS  Article  Google Scholar 

  23. [23]

    T. H. R. Marques, B. M. Lima, J. H. Osório, L. E. da Silva, and C. M. B. Cordeiro, “3D printed microstructured optical fibers,” in 2017 SBMO/IEEE MTT-S International Microwave and Optoelectronics Conference (IMOC), Brazil, Aug. 27–30, 2017, pp: 1–3.

  24. [24]

    W. Talataisong, R. Ismaeel, T. H. R. Marques, S. A. Mousavi, M. Beresna, M. A. Gouveia, et al., “Mid-IR hollow-core microstructured fiber drawn from a 3D printed PETG preform,” Scientific Reports, 2018, 8(1): 8113.

    ADS  Article  Google Scholar 

  25. [25]

    M. G. Zubel, K. Sugden, D. J. Webb, D. Saez-Rodriguez, K. Nielsen, and O. Bang, “Embedding silica and polymer fibre Bragg gratings (FBG) in plastic 3D-printed sensing patches,” Micro-structured and Specialty Optical Fibres IV, 2016, 9886: 98860N.

    Article  Google Scholar 

  26. [26]

    N. R. Manzo, G. T. Callado, C. M. B. Cordeiro, and L. C. M. Vieira Jr., “Embedding optical fiber Bragg grating (FBG) sensors in 3D printed casings,” Optical Fiber Technology, 2019, 53: 102015.

    Article  Google Scholar 

  27. [27]

    R. Scott, M. Vidakovic, S. Chikermane, B. McKinley, T. Sun, P. Banerji, et al., “Encapsulation of fiber optic sensors in 3D printed packages for use in civil engineering applications: a preliminary study,” Sensors, 2019, 19(7): 1689.

    Article  Google Scholar 

Download references


This research was supported by Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP) (Grant No. 2017/06411-3).

Author information



Corresponding author

Correspondence to Cristiano M. B. Cordeiro.

Rights and permissions

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

de Souza, K.R., Osório, J.H., Carvalho, J.B. et al. 3D Printing Technology for Tapered Optical Fiber Protection With Gas Sensing Possibilities. Photonic Sens (2020). https://doi.org/10.1007/s13320-020-0592-3

Download citation


  • 3D printing
  • additive manufacturing
  • optical fiber
  • tapered fibers
  • sensing