Polymer Waveguide Coupled Surface Plasmon Refractive Index Sensor: A Theoretical Study

Abstract

A waveguide coupled surface plasmon sensor for detection of liquid with high refractive index (RI) is designed based on polymer materials. The effects of variation of the thickness of the Au film, polymethyl methacrylate (PMMA) buffer, and waveguide layer on the sensing performance of the waveguide are comprehensively investigated by using the finite difference method. Numerical simulations show that a thinner gold film gives rise to a more sensitive structure, while the variation of the thickness of the PMMA buffer and waveguide layer has a little effect on the sensitivity. For liquid with high RI, the sensitivity of the sensor increases significantly. When RI of liquid to be measured increases from 1.45 to 1.52, the sensitivity is as high as 4518.14nm/RIU, and a high figure of merit of 114.07 is obtained. The waveguide coupled surface plasmon RI sensor shows potential applications in the fields of environment, industry, and agriculture sensing with the merits of compact size, low cost, and high integration density.

References

  1. [1]

    M. S. Hoseinian and M. A. Bolorizadeh, “Design and simulation of a highly sensitive SPR optical fiber sensor,” Photonic Sensors, 2019, 9(1): 33–42.

    ADS  Google Scholar 

  2. [2]

    A. Motogaito and Y. Ito, “Excitation mechanism of surface plasmon polaritons for surface plasmon sensor with 1d metal grating structure for high refractive index medium,” Photonic Sensors, 2019, 9(1): 11–18.

    ADS  Google Scholar 

  3. [3]

    E. Ozbay, “Plasmonics: Merging photonics and electronics at nanoscale dimensions,” Science, 2006, 311(5758): 189–193.

    ADS  Google Scholar 

  4. [4]

    J. Homola, “Surface plasmon resonance sensors for detection of chemical and biological species,” Chemical Reviews, 2008, 108(2): 462–493.

    Google Scholar 

  5. [5]

    Jiří Homola, Sinclair S. Yee, and Günter Gauglitz, “Surface Plasmon Resonance Sensors: Review,” Analytical & Bioanalytical Chemistry, 1999, 377(3): 528–539.

    Google Scholar 

  6. [6]

    Y. Yuan, N. Yuan, D. Gong, and M. H. Yang, “A high-sensitivity and broad-range SPR glucose sensor based on improved glucose sensitive membranes,” Photonic Sensors, 2019, 9(4): 309–316.

    ADS  Google Scholar 

  7. [7]

    G. Xiao and H. Y. Yang, “Modeling of refractive index sensing using Au aperture arrays on a Bragg fiber facet,” Photonic Sensors, 2019, 9(4): 337–343.

    ADS  Google Scholar 

  8. [8]

    W. R. Wong, O. Krupin, F. R. Mahamd Adikan, and P. Berini, “Optimization of long-range surface plasmon waveguides for attenuation-based biosensing,” Journal of Lightwave Technology, 2015, 33(15): 3234–3242.

    ADS  Google Scholar 

  9. [9]

    W. R. Wong, S. D. Sekaran, F. R. Adikan, and P. Berini, “Detection of dengue NS1 antigen using long-range surface plasmon waveguides,” Biosensors and Bioelectronics, 2016, 78: 132–139.

    Google Scholar 

  10. [10]

    O. Krupin, H. Asiri, C. Wang, R. N. Tait, and P. Berini, “Biosensing using straight long-range surface plasmon waveguides,” Optics Express, 2013, 21(1): 698–709.

    ADS  Google Scholar 

  11. [11]

    D. C. Li, B. Y. Lu, R. Zhu, H. X. Yu, and K. X. Xu, “An optofluidic system with volume measurement and surface plasmon resonance sensor for continuous glucose monitoring,” Biomicrofluidics, 2016, 10(1): 011913.

    Google Scholar 

  12. [12]

    S. K. Vashist, E. M. Schneider, and J. H. T. Luong, “Surface plasmon resonance-based immunoassay for human C-reactive protein,” Analyst, 2015, 140(13): 4445–4452.

    ADS  Google Scholar 

  13. [13]

    A. Aray, F. Chiavaioli, M. Arjmand, C. Trono, S. Tombelli, A. Giannetti, et al., “SPR-based plastic optical fibre biosensor for the detection of C-reactive protein in serum,” Journal of Biophotonics, 2016, 9(10): 1077–1084.

    Google Scholar 

  14. [14]

    L. Wu, J. Guo, H. Xu, X. Dai, and Y. Xiang, “Ultrasensitive biosensors based on long-range surface plasmon polariton and dielectric waveguide modes,” Photonics Research, 2016, 4(6): 262–266.

    Google Scholar 

  15. [15]

    D. Michel, F. Xiao, and K. Alameh, “A compact, flexible fiber-optic surface plasmon resonance sensor with changeable sensor chips,” Sensors and Actuators B: Chemical, 2017, 246: 258–261.

    Google Scholar 

  16. [16]

    M. Vala, S. Etheridge, J. A. Roach, and J. Homola, “Long-range surface plasmons for sensitive detection of bacterial analytes,” Sensors and Actuators B: Chemical, 2009, 139(1): 59–63.

    Google Scholar 

  17. [17]

    Q. Liu and K. S. Chiang, “Refractive-index sensor based on long-range surface plasmon mode excitation with long-period waveguide grating,” Optics Express, 2009, 17(10): 7933–7942.

    ADS  Google Scholar 

  18. [18]

    J. Dostálek, J. Čtyrokýa, J. Homola, E. Brynda, M. Skalsky, P. Nekvindová, et al., “Surface plasmon resonance biosensor based on integrated optical waveguide,” Sensors and Actuators B: Chemical, 2001, 76(1–3): 8–12.

    Google Scholar 

  19. [19]

    A. K. Mishra, S. K. Mishra, and B. D. Gupta, “SPR based fiber optic sensor for refractive index sensing with enhanced detection accuracy and figure of merit in visible region,” Optics Communications, 2015, 344: 86–91.

    ADS  Google Scholar 

  20. [20]

    A. K. Sheridan, P. N. Ngamukot, P. N. Bartlett, and J. S. Wilkinson, “Waveguide surface plasmon resonance sensing: Electrochemical desorption of alkane thiol monolayers,” Sensors and Actuators B: Chemical, 2006, 117(1): 253–260.

    Google Scholar 

  21. [21]

    Z. Jin, W. Guan, C. Liu, T. Xue, Q. Wang, W. Zheng, et al., “A stable and high resolution optical waveguide biosensor based on dense TiO2/Ag multilayer film,” Applied Surface Science, 2016, 377: 207–212.

    ADS  Google Scholar 

  22. [22]

    D. V. Nesterenko, S. Hayashi, and Z. Sekkat, “Extremely narrow resonances, giant sensitivity and field enhancement in low-loss waveguide sensors,” Journal of Optics, 2016, 18(6): 065004.

    ADS  Google Scholar 

  23. [23]

    C. R. Lavers and J. S. Wilkinson, “A waveguide-coupled surface-plasmon sensor for an aqueous environment,” Sensors and Actuators B: Chemical, 1994, 22(1): 75–81.

    Google Scholar 

  24. [24]

    R. D. Harris and J. S. Wilkinson, “Waveguide surface plasmon resonance sensors,” Sensors and Actuators B: Chemical, 1995, 29(1–3): 261–267.

    Google Scholar 

  25. [25]

    C. Mouvet, R. D. Harris, C. Maciag, B. J. Luff, and G. Ismail, “Determination of simazine in water samples by waveguide surface plasmon resonance,” Analytica Chimica Acta, 1997, 338(1–2): 109–117.

    Google Scholar 

  26. [26]

    M. N. Weiss and R. Srivastava, “Experimental investigation of a surface plasmon-based integrated-optic humidity sensor,” Electronics Letters, 1996, 32(9): 842–843.

    ADS  Google Scholar 

  27. [27]

    F. Liu, R. Wan, Y. Huang, and J. Peng, “Refractive index dependence of the coupling characteristics between long-range surface-plasmon-polariton and dielectric waveguide modes,” Optics Letters, 2009, 34(17): 2697–2699.

    ADS  Google Scholar 

  28. [28]

    B. Fan, L. Fang, Y. Li, X. Wang, K. Cui, F. Xue, et al., “Integrated refractive index sensor based on hybrid coupler with short range surface plasmon polariton and dielectric waveguide,” Sensors and Actuators B: Chemical, 2013, 186: 495–505.

    Google Scholar 

  29. [29]

    L. Ji, X. Sun, G. He, L. Yu, X. Wang, Y. Yi, et al., “Surface plasmon resonance refractive index sensor based on ultraviolet bleached polymer waveguide,” Sensors and Actuators B: Chemical, 2017, 244: 373–379.

    Google Scholar 

  30. [30]

    S. K. Mishra, B. Zou, and K. S. Chiang, “Surface-plasmon-resonance refractive index sensor with Cu coated polymer waveguide,” IEEE Photonics Technology Letters, 2016, 28(17): 1835–1838.

    ADS  Google Scholar 

  31. [31]

    I. C. Liu, P. C. Chen, L. K. Chau, and G. E. Chang, “Optofluidic refractive-index sensors employing bent waveguide structures for low-cost, rapid chemical and biomedical sensing,” Optics Express, 2018, 26(1): 273–283.

    ADS  Google Scholar 

  32. [32]

    A. K. Sharma and B. D. Gupta, “Fiber optic sensor based on surface plasmon resonance with nanoparticle films,” Photonics and Nanostructures-Fundamentals and Applications, 2005, 3(1): 30–37.

    ADS  Google Scholar 

  33. [33]

    M. Kanso, S. Cuenot, and G. Louarn, “Sensitivity of optical fiber sensor based on surface plasmon resonance: modeling and experiments,” Plasmonics, 2008, 3(2–3): 49–57.

    Google Scholar 

  34. [34]

    Y. S. Dwivedi, A. K. Sharma, and B. D. Gupta, “Influence of design parameters on the performance of a surface plasmon sensor based fiber optic sensor,” Plasmonics, 2008, 3(2–3): 79–86.

    Google Scholar 

  35. [35]

    R. K. Verma, A. K. Sharma, and B. D. Gupta, “Surface plasmon resonance based tapered fiber optic sensor with different taper profiles,” Optics Communications, 2008, 281(6): 1486–1491.

    ADS  Google Scholar 

  36. [36]

    G. B. He, Y. Gao, Y. Xu, L. T. Ji, X. Q. Sun, X. B. Wang, Y. J. Yi, C. M. Chen, F. Wang, D. M. Zhang and Y. D. Wu, “Design and fabrication of three-dimensional polymer mode multiplexer based on asymmetric waveguide couplers,” Journal of Optics, 2018, 20: 055801.

    ADS  Google Scholar 

  37. [37]

    J. N. Polky and G. L. Mitchell, “Metal-clad planar dielectric waveguide for integrated optics,” Journal of the Optical Society of America, 1974, 64(3): 274–279.

    ADS  Google Scholar 

  38. [38]

    J. C. Ingram, K. W. Nebesny, and J. E. Pemberton, “Optical constants of the noble metals determined by reflection electron energy loss spectroscopy,” Applied Surface Science, 1990, 44(4): 293–300.

    ADS  Google Scholar 

  39. [39]

    Z. Y. Zhang, L. N. Wang, H. F. Hu, K. W. Li, X. P. Ma, and G. F. Song, “A high figure of merit localized surface plasmon sensor based on a gold nanograting on the top of a gold planar film,” Chinese Physics B, 2013, 22(10): 104213.

    ADS  Google Scholar 

  40. [40]

    X. Wang, J. K. Zhu, H. Tong, X. D. Yang, X. Wu, Z. Y. Pang, et al., “A theoretical study of a plasmonic sensor comprising a gold nano-disk array on gold film with a SiO2 spacer,” Chinese Physics B, 2019, 28(4): 044201.

    ADS  Google Scholar 

  41. [41]

    Q. Q. Meng, X. Zhao, S. J. Chen, C. Y. Lin, Y. C. Ding, and Z. Y. Chen, “Performance analysis of surface plasmon resonance sensor with high-order absentee layer,” Chinese Physics B, 2017, 26(12): 124213.

    ADS  Google Scholar 

  42. [42]

    X. Feng, M. Yang, Y. Luo, J. Tang, H. Guan, J. Fang, et al., “Long range surface plasmon resonance sensor based on side polished fiber with the buffer layer of magnesium fluoride,” Optical and Quantum Electronics, 2017, 49(4): 147.

    Google Scholar 

Download references

Acknowledgement

The authors gratefully acknowledge the financial support from the Shandong Provincial Key Research and Development Program (Grant Nos. 2018YFJH0702 and 2019JZZY020711) and Qingdao Postdoctoral Applied Research Project (Grant No. 6242007311086).

Author information

Affiliations

Authors

Corresponding author

Correspondence to Chi Wu.

Rights and permissions

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Ji, L., Yang, S., Shi, R. et al. Polymer Waveguide Coupled Surface Plasmon Refractive Index Sensor: A Theoretical Study. Photonic Sens (2020). https://doi.org/10.1007/s13320-020-0589-y

Download citation

Keywords

  • Waveguide
  • surface plasmon polaritons
  • polymer
  • refractive index sensor