Coherent Random Lasing Realized in Polymer Vesicles


We have demonstrated the realization of a coherent vesicle random lasing (VRL) from the dye doped azobenzene polymer vesicles self-assembled in the tetrahydrofuran-water system, which contains a double-walled structure: a hydrophilic and hydrophobic part. The effect of the dye and azobenzene polymer concentration on the threshold of random laser has been researched. The threshold of random laser decreases with an increase in the concentration of the pyrromethene 597 (PM597) laser and azobenzene polymer. Moreover, the scattering of small size group vesicles is attributed to providing a loop to boost the coherent random laser through the Fourier transform analysis. Due to the vesicles having the similar structure with the cell, the generation of coherent random lasers from vesicles expand random lasers to the biomedicine filed.


  1. [1]

    V. S. Letokhov, “Stimulated emission of an ensemble of scattering particles with negative absorption,” ZhETF Prisma, 1967, 5(8): 262–265.

    Google Scholar 

  2. [2]

    R. C. Polson and Z. V. Vardeny, “Random lasing in human tissues,” Applied Physics Letters, 2004, 85(7): 1289–1291.

    Article  Google Scholar 

  3. [3]

    B. Redding, M. A. Choma, and H. Cao, “Speckle-free laser imaging using random laser illumination,” Nature Photonics, 2012, 6(6): 355–359.

    Article  Google Scholar 

  4. [4]

    W. L. Zhang, Y. Y. Zhu, Y. J. Rao, Z. Wang, X. Jia, and H. Wu, “Random fiber laser formed by mixing dispersion compensated fiber and single mode fiber,” Optics Express, 2013, 21(7): 8544.

    Article  Google Scholar 

  5. [5]

    D. S. Wiersma, “Laser physics: the smallest random laser,” Nature, 2000, 406(6792): 132–133.

    Article  Google Scholar 

  6. [6]

    W. L. Zhang, Y. J. Rao, J. M. Zhu, Z. X. Yang, Z. N. Wang, and X. H. Jia, “Low threshold 2nd-order random lasing of a fiber laser with a half-opened cavity,” Optics Express, 2012, 20(13): 14400.

    Article  Google Scholar 

  7. [7]

    D. S. Wiersma, “The physics and applications of random lasers,” Nature Physics, 208, 4(5): 359–367.

    Article  Google Scholar 

  8. [8]

    Y. Ling, H. Cao, A. L. Burin, M. A. Ratner, X. Liu, and R. Chang, “Investigation of random lasers with resonant feedback,” Physical Review A, 2001, 64(6): 063808.

    Article  Google Scholar 

  9. [9]

    H. Cao, Y. G. Zhao, S. T. Ho, E. W. Seelig, Q. H. Wang, and R. Chang, “Random laser action in semiconductor powder,” Physical Review Letters, 1999, 82(11): 2278–2281.

    Article  Google Scholar 

  10. [10]

    D. S. Wiersma, M. P. Van Albada, and A. Lagendijk, “Coherent backscattering of light from amplifying random media,” Physical Review Letters, 1995, 75(9): 1739–1742.

    Article  Google Scholar 

  11. [11]

    H. Cao, “Lasing in random media,” Waves Random Complex, 2003, 13(13): R1–R39.

    Google Scholar 

  12. [12]

    N. M. Lawandy, R. M. Balachandran, A. S. L. Gomes, and E. Sauvain, “Laser action in strongly scattering media,” Nature, 1994, 368(6470): 436–438.

    Article  Google Scholar 

  13. [13]

    S. Ferjani, A. De Luca, V. Barna, C. Versace, and G. Strangi, “Thermo-recurrent nematic random laser,” Optics Express, 2009, 17(3): 2042–2047.

    Article  Google Scholar 

  14. [14]

    Z. J. Hu, J. Y. Xia, Y. Y. Liang, J. X. Wen, E. M. Miao, J. J. Chen, et al., “Tunable random polymer fiber laser,” Optics Express, 2017, 25(15): 18421.

    Article  Google Scholar 

  15. [15]

    Z. J. Hu, H. J. Zheng, L. Wang, X. Tian, T. Wang, Q. Zhang, et al., “Random fiber laser of POSS solution-filled hollow optical fiber by end pumping,” Optics Communications, 2012, 285(19): 3967–3970.

    Article  Google Scholar 

  16. [16]

    Z. J. Hu, Q. Zhang, B. Miao, Q. Fu, G. Zou, Y. Chen, et al., “Coherent random fiber laser based on nanoparticles scattering in the extremely weakly scattering regime,” Physical Review Letters, 2012, 109(25): 253901.

    Article  Google Scholar 

  17. [17]

    Z. Tuzar and P. Kratochví, “Block and graft copolymer micelles in solution,” Advances in Colloid and Interface Science, 1976, 6(3): 201–232.

    Article  Google Scholar 

  18. [18]

    C. Price, “Developments in block copolymers,” London: Applied Science Publishers, 1982: 39.

    Google Scholar 

  19. [19]

    J. Selb and Y. Gallot, “Developments in block copolymers,” London: Elsevier, 1985: 27.

    Google Scholar 

  20. [20]

    L. Luo and A. Eisenberg, “Thermodynamic stabilization mechanism of block copolymer vesicles,” Journal of the American Chemical Society, 2001, 123(5): 1012.

    Article  Google Scholar 

  21. [21]

    E. Fattal, P. Couvreur, and C. Dubernet, “‘Smart’ delivery of antisense oligonucleotides by anionic pH-sensitive liposomes,” Advanced Drug Delivery Reviews, 2004, 56(7): 931–946.

    Article  Google Scholar 

  22. [22]

    W. J. Mulder, G. J. Strijkers, A. W. Griffioen, L. Van Bloois, G. Molema, G. Storm, et al., “A liposomal system for contrast-enhanced magnetic resonance imaging of molecular targets,” Bioconjugate Chemistry, 2004, 15(4): 799–806.

    Article  Google Scholar 

  23. [23]

    C. Nardin, J. Widmer, M. Winterhalter, and W. Meier, “Amphiphilic block copolymer nanocontainers as bioreactors,” The European Physical Journal E -Soft Matter, 2001, 4(4): 403–410.

    Article  Google Scholar 

  24. [24]

    M. Qi, G. Li, and Y. Gao, “Preparation and potential applications of polymer vesicles as drug carriers,” Ion Exchange & Adsorption, 2013, 29(5): 473–480.

    Google Scholar 

  25. [25]

    J. J. L. M. Cornelissen, M. Fischer, N. A. J. M. Sommerdijk, and R. J. M. Nolte, “Helical superstructures from charged poly(styrene)-poly(isocyanodipeptide) block copolymers,” Science, 1998, 280(5368): 1427–1430.

    Article  Google Scholar 

  26. [26]

    S. J. Holder, N. A. J. M. Sommerdijk, S. J. Williams, R. J. M. Nolte, R. C. Hiorns, and R. G. Jones, “The first example of a poly(ethylene oxide)-poly (methylphenylsilane) amphiphilic block copolymer: vesicle formation in water,” Chemical Communications, 1998, 14: 1445–1446.

    Article  Google Scholar 

  27. [27]

    C. Nardin, T. Hirt, J. Leukel, and W. Meier, “Polymerized ABA triblock copolymer vesicles,” Langmuir, 2000, 16(3): 1035–1041.

    Article  Google Scholar 

  28. [28]

    H. Kukula, H. Schlaad, M. Antonietti, and S. Foerster, “The formation of polymer vesicles or “peptosomes” by polybutadiene-block-poly(l-glutamate)s in dilute aqueous solution,” Journal of the American Chemical Society, 2002, 124(8): 1658.

    Article  Google Scholar 

  29. [29]

    B. M. Discher, D. A. Hammer, F. S. Bates, and D. E. Discher, “Polymer vesicles in various media,” Current Opinion in Colloid & Interface Science, 2000, 5(1–2): 125–131.

    Article  Google Scholar 

  30. [30]

    A. A. Choucair, A. H. Kycia, and A. Eisenberg, “Kinetics of fusion of polystyrene-b-poly(acrylic acid) vesicles in solution,” Langmuir, 2003, 19(4): 1001–1008.

    Article  Google Scholar 

  31. [31]

    M. Irie, “Stimuli-responsive poly (N-isopropylacrylamide). Photo- and chemical-induced phase transitions,” Advances in Polymer Science, 1993, 110: 49–65.

    Article  Google Scholar 

  32. [32]

    B. L. Feringa, W. F. Jager, B. Delange, and E. W. Meiger, “Chiroptical molecular switch,” Journal of the American Chemical Society, 1991, 113(14): 5468–5470.

    Article  Google Scholar 

  33. [33]

    J. Eastoe and A. Vesperinas, “Self-assembly of light-sensitive surfactants,” Soft Matter, 2005, 1(5): 338–347.

    Article  Google Scholar 

  34. [34]

    W. Su, K. Han, Y. Luo, Z. Wang, Y. Li, and Q. Zhang, “Formation and photoresponsive properties of giant microvesicles assembled from azobenzene-containing amphiphilic diblock copolymers,” Macromolecular Chemistry & Physics, 2007, 208(9): 955–963.

    Article  Google Scholar 

  35. [35]

    W. Su, Y. Luo, Q. Yan, S. Wu, K. Han, Q. Zhang, et al., “Photoinduced fusion of micro-vesicles self-assembled from azobenzene-containing amphiphilic diblock copolymers,” Macromolecular Rapid Communications, 2007, 28(11): 1251–1256.

    Article  Google Scholar 

  36. [36]

    F. Lahoz, I. R. Martín, M. Urgellés, J. Marrero-Alonso, R. Marín, C. J. Saavedra, et al., “Random laser in biological tissues impregnated with a fluorescent anticancer drug,” Laser Physics Letters, 2015, 12(4): 045805.

    Article  Google Scholar 

  37. [37]

    M. Humar, A. Dobravec, X. Zhao, and S. H. Yun, “Biomaterial microlasers implantable in the cornea, skin, and blood,” Optica, 2017, 4(9): 1080.

    Article  Google Scholar 

  38. [38]

    M. C. Gather and S. H. Yun, “Single-cell biological lasers,” Nature Photonics, 2011, 5(7): 406–410.

    Article  Google Scholar 

  39. [39]

    Y. Wang, G. Shen, J. Gao, G. Zou, and Q. J. Zhang, “Dynamic orientation of azopyridine units within the shell of vesicles PNIPAM-b-PAzPyn copolymers,” Journal of Polymer Science Part B: Polymer Physics, 2015, 53(6): 415–421.

    Article  Google Scholar 

  40. [40]

    G. Y. Shen, G. S. Xue, J. Cai, G. Zou, Y. M. Li, and Q. J. Zhang, “Photo-induced reversible uniform to Janus shape change of vesicles composed of PNIPAM-b-PAzPy2,” Soft Matter, 2013, 9(8): 2512–2517.

    Article  Google Scholar 

Download references


The authors would like to thank the financial supports from the National Natural Science Foundation of China (Grant Nos. 11874012, 11404087, 11574070, 51771186, 11404086, 111874126, and 61501165); Fundamental Research Funds for the Central Universities (Grant Nos. JZ2019HGPA0099 and PA2018GDQT0006); Project of State Key Laboratory of Environment-friendly Energy Materials, Southwest University of Science and Technology (Grant No. 19fksy0111); Anhui Province Key Laboratory of Environment-friendly Polymer Materials (Grant No. KF2019001); the European Union’s Horizon 2020 Research and Innovation Programme under the Marie Skłodowska-Curie Grant Agreement (Grant No. 744817); Science and Technology Commission of Shanghai Municipality; China Postdoctoral Science Foundation (Grant Nos. 2015M571917 and 2017T100442).

Author information



Corresponding authors

Correspondence to Zhijia Hu or Jiajun Ma.

Rights and permissions

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (, which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Li, Y., Xie, K., Zhang, X. et al. Coherent Random Lasing Realized in Polymer Vesicles. Photonic Sens 10, 254–264 (2020).

Download citation


  • Random laser
  • vesicles
  • scattering
  • azobenzene polymer