Right-Angle Shaped Elements as Dual-Band Metamaterial Absorber in Terahertz


Metamaterial absorbers display potential applications in the field of photonics and have been investigated extensively during the last decade. We propose a dual-band resonant metamaterial absorber with right-angle shaped elements (RAEs) in the terahertz range based on numerical simulations. The absorber remains insensitive to a wide range of incidence angles (0°–70°) by showing a minimum absorbance of ~80% at 70°. Furthermore, the proposed absorber is highly independent on any state of polarization of the incidence electromagnetic wave due to the high absorbance, i.e., greater than 80%, recorded for the considered polarization states. To further comprehend the slight variations in absorbance as a function of change in the angle of incidence, the impedance of the structure has been critically examined. The metamaterial absorber is simple in design, and we provide a possible path of fabrication.


  1. [1]

    E. Shamonina and L. Solymar, “Metamaterials: how the subject started,” Metamaterials, 2007, 1(1): 12–18.

    ADS  Article  Google Scholar 

  2. [2]

    D. R. Smith, “Metamaterials and negative refractive index,” Science, 2004, 305(5685): 788–792.

    ADS  Article  Google Scholar 

  3. [3]

    J. Kim, K. Han, and J. W. Hahn, “Selective dual-band metamaterial perfect absorber for infrared stealth technology,” Scientific Reports, 2017, 7(1): 6740.

    ADS  Article  Google Scholar 

  4. [4]

    V. M. Shalaev, “Optical negative-index metamaterials,” Nature Photonics, 2007, 1(1): 41–48.

    ADS  MathSciNet  Article  Google Scholar 

  5. [5]

    A. M. Fox, Optical properties of solids. Oxford: Oxford University Press, 2001.

    Google Scholar 

  6. [6]

    J. B. Pendry, “Negative refraction makes a perfect lens,” Physical Review Letters, 2000, 85(18): 3966–3969.

    ADS  Article  Google Scholar 

  7. [7]

    C. Wu, I. N. Burton, G. Shvets, J. John, A. Milder, B. Zollars, et al., “Large-area wide-angle spectrally selective plasmonic absorber,” Physical Review B, 2011, 84(7): 075102.

    Google Scholar 

  8. [8]

    T. Cao, C. Wei, R. E. Simpson, L. Zhang, and M. J. Cryan, “Broadband polarization-independent perfect absorber using a phase-change metamaterial at visible frequencies,” Scientific Reports, 2014, 4: 3955.

    Article  Google Scholar 

  9. [9]

    Y. Cheng, H. Yang, Z. Cheng, and N. Wu, “Perfect metamaterial absorber based on a split-ring-cross resonator,” Applied Physics A, 2011, 102(1): 99–103.

    Article  Google Scholar 

  10. [10]

    N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, “Perfect metamaterial absorber,” Physical Review Letters, 2008, 100(20): 207402.

    Google Scholar 

  11. [11]

    H. Tao, C. M. Bingham, A. C. Strikwerda, D. Pilon, D. Shrekenhamer, N. I. Landy, et al., “Highly flexible wide angle of incidence terahertz metamaterial absorber: design, fabrication, and characterization,” Physical Review B, 2008, 78(24): 241103.

    Google Scholar 

  12. [12]

    K. Aydin, V. E. Ferry, R. M. Briggs, and H. A. Atwater, “Broadband polarization-independent resonant light absorption using ultrathin plasmonic super absorbers,” Nature Communications, 2011, 2: 517.

    Google Scholar 

  13. [13]

    W. Li, X. Zhou, Y. Ying, X. Qiao, F. Qin, Q. Li, et al.,“Polarization-insensitive wide-angle multiband metamaterial absorber with a double-layer modified electric ring resonator array,” AIP Advances, 2015, 5(6): 067151.

    Google Scholar 

  14. [14]

    D. Lim, D. Lee, and S. Lim, “Angle- and polarization-insensitive metamaterial absorber using via array,” Scientific Reports, 2016, 6(1): 39686.

    Google Scholar 

  15. [15]

    Y. Q. Ye, Y. Jin, and S. He, “Omnidirectional, polarization-insensitive and broadband thin absorber in the terahertz regime,” Journal of the Optical Society of America B, 2010, 27(3): 498.

    Article  Google Scholar 

  16. [16]

    L. Cong, S. Tan, R. Yahiaoui, F. Yan, W. Zhang, and R. Singh, “Experimental demonstration of ultrasensitive sensing with terahertz metamaterial absorbers: a comparison with the metasurfaces,” Applied Physics Letters, 2015, 106(3): 031107.

    Google Scholar 

  17. [17]

    H. Tao, N. I. Landy, C. M. Bingham, X. Zhang, R. D. Averitt, and W. J. Padilla, “A metamaterial absorber for the terahertz regime: design, fabrication and characterization,” Optics Express, 2008, 16(10): 7181.

    ADS  Article  Google Scholar 

  18. [18]

    T. T. Nguyen and S. Lim, “Wide incidence angle-insensitive metamaterial absorber for both TE and TM polarization using eight-circular-sector,” Scientific Reports, 2017, 7(1): 3204.

    ADS  Article  Google Scholar 

  19. [19]

    T. Wu, J. Lai, S. Wang, X. Li, and Y. Huang, “UV-visible broadband wide-angle polarization-insensitive absorber based on metal groove structures with multiple depths,” Applied Optics, 2017, 56(21): 5844.

    ADS  Article  Google Scholar 

  20. [20]

    N. T. Trung, D. Lee, H. K. Sung, and S. Lim, “Angle- and polarization-insensitive metamaterial absorber based on vertical and horizontal symmetric slotted sectors,” Applied Optics, 2016, 55(29): 8301.

    Google Scholar 

  21. [21]

    S. Shang, S. Yang, L. Tao, L. Yang, and H. Cao, “Ultrathin triple-band polarization-insensitive wide-angle compact metamaterial absorber,” AIP Advances, 2016, 6(7): 075203.

    Google Scholar 

  22. [22]

    X. J. He, Y. Wang, J. Wang, T. Gui, and Q. Wu, “Dual-band terahertz metamaterial absorber with polarization insensitivity and wide inciden angle,” Progress in Electromagnetics Research, 2011, 115: 381–397.

    Article  Google Scholar 

  23. [23]

    Y. Ma, Q. Chen, J. Grant, S. C. Saha, A. Khalid, and D. R. S. Cumming, “A terahertz polarization insensitive dual band metamaterial absorber,” Optics Letters, 2011, 36(6): 945.

    Google Scholar 

  24. [24]

    Q. Y. Wen, H. W. Zhang, Y. S. Xie, Q. H. Yang, and Y. L. Liu, “Dual band terahertz metamaterial absorber: design, fabrication, and characterization,” Applied Physics Letters, 2009, 95(24): 241111.

    Google Scholar 

  25. [25]

    X. Huang, C. Lu, C. Rong, and M. Liu, “Wide-angle perfect metamaterial absorbers based on cave-rings and the complementary patterns,” Optical Materials Express, 2018, 8(9): 2520.

    ADS  Article  Google Scholar 

  26. [26]

    X. Huang, C. Lu, C. Rong, Z. Hu, and M. Liu, “Multiband ultrathin polarization-insensitive terahertz perfect absorbers with complementary metamaterial and resonator based on high-order electric and magnetic resonances,” IEEE Photonics Journal, 2018, 10(6): 1–11.

    Google Scholar 

  27. [27]

    T. Cao, S. Wang, and C. W. Wei, “Simulation of tunable metamaterial perfect absorber by modulating Bi2Se3 dielectric function,” Materials Express, 2016, 6(1): 45–52.

    Article  Google Scholar 

  28. [28]

    W. Dong, Y. Qiu, J. Yang, R. E. Simpson, and T. Cao, “Wideband absorbers in the visible with ultrathin plasmonic-phase change material nanogratings,” The Journal of Physical Chemistry C, 2016, 120(23): 12713–12722.

    Article  Google Scholar 

  29. [29]

    T. Cao, L. Zhang, R. E. Simpson, and M. J. Cryan, “Mid-infrared tunable polarization-independent perfect absorber using a phase-change metamaterial,” Journal of the Optical Society of America B, 2013, 30(6): 1580.

    Article  Google Scholar 

  30. [30]

    T. Cao, R. E. Simpson, and M. J. Cryan, “Study of tunable negative index metamaterials based on phase-change materials,” Journal of the Optical Society of America B, 2013, 30(2): 439.

    Article  Google Scholar 

  31. [31]

    T. Cao, C. Wei, R. E. Simpson, L. Zhang, and M. J. Cryan, “Rapid phase transition of a phase-change metamaterial perfect absorber,” Optical Materials Express, 2013, 3(8): 1101.

    ADS  Article  Google Scholar 

  32. [32]

    G. P. Williams, “Filling the THz gap-high power sources and applications,” Reports on Progress in Physics, 2005, 69(2): 301–326.

    ADS  Article  Google Scholar 

  33. [33]

    C. L. Holloway, E. F. Kuester, J. A. Gordon, J. O’Hara, J. Booth, and D. R. Smith, “An overview of the theory and applications of metasurfaces: the two-dimensional equivalents of metamaterials,” IEEE Antennas and Propagation Magazine, 2012, 54(2): 10–35.

    ADS  Article  Google Scholar 

  34. [34]

    Y. J. Yoo, J. S. Hwang, and Y. P. Lee, “Flexible perfect metamaterial absorbers for electromagnetic wave,” Journal of Electromagnetic Waves and Applications, 2017, 31(7): 663–715.

    Article  Google Scholar 

  35. [35]

    C. Gong, M. Zhan, J. Yang, Z. Wang, H. Liu, Y. Zhao, et al., “Broadband terahertz metamaterial absorber based on sectional asymmetric structures,” Scientific Reports, 2016, 6(1): 32466.

    ADS  Article  Google Scholar 

  36. [36]

    X. Liu, C. Lan, B. Li, Q. Zhao, and J. Zhou, “Dual band metamaterial perfect absorber based on artificial dielectric ‘molecules’,” Scientific Reports, 2016, 6(1): 28906.

    ADS  Article  Google Scholar 

  37. [37]

    X. Liu, C. Lan, K. Bi, B. Li, Q. Zhao, and J. Zhou, “Dual band metamaterial perfect absorber based on Mie resonances,” Applied Physics Letters, 2016, 109(6): 062902.

    Google Scholar 

  38. [38]

    B. Zhang, Y. Zhao, Q. Hao, B. Kiraly, I. Khoo, S. Chen, et al.,“Polarization-independent dual-band infrared perfect absorber based on a metal-dielectric-metal elliptical nanodisk array,” Optics Express, 2011, 19(16): 15221.

    ADS  Article  Google Scholar 

  39. [39]

    H. M. Lee and H. Lee, “A dual-band metamaterial absorber based with resonant-magnetic structures,” Progress in Electromagnetics Research, 2012, 33: 1–12.

    Article  Google Scholar 

  40. [40]

    Y. Ma, H. Zhang, Y. Li, and Y. Wang, “Miniaturized and dual-band metamaterial absorber with fractal Sierpinski structure,” Journal of the Optical Society of America B, 2014, 31(2): 325.

    Article  Google Scholar 

  41. [41]

    K. Z. Rajab, M. Naftaly, E. H. Linfield, J. C. Nino, D. Arenas, D. Tanner, et al. “Broadband dielectric characterization of aluminum oxide (Al2O3),” Journal of Microelectronics and Electronic Packaging, 2008, 5(1): 2–7.

    Article  Google Scholar 

  42. [42]

    N. Matsumoto, T. Hosokura, K. Kageyama, H. Takagi, Y. Sakabe, and M. Hangyo, “Analysis of dielectric response of TiO2 in terahertz frequency region by general harmonic oscillator model,” Japanese Journal of Applied Physics, 2008, 47(9): 7725–7728.

    ADS  Article  Google Scholar 

  43. [43]

    A. D. Rakic, A. B. Djurišic, J. M. Elazar, and M. L. Majewski, “Optical properties of metallic films for vertical-cavity optoelectronic devices,” Applied Optics, 1998, 37(22): 5271.

    Google Scholar 

  44. [44]

    J. R. DeVore, “Refractive indices of rutile and sphalerite,” Journal of the Optical Society of America, 1951, 41(6): 416.

    ADS  Article  Google Scholar 

  45. [45]

    D. M. Pozar, Microwave engineering, 4th Ed. USA: Wiley, 2011.

    Google Scholar 

  46. [46]

    S. Daniel and P. Bawuah, “Highly polarization and wide-angle insensitive metamaterial absorber for terahertz applications,” Optical Materials, 2018, 84: 447–452.

    Google Scholar 

  47. [47]

    Y. Bai, L. Zhao, D. Ju, Y. Jiang, and L. Liu, “Wide-angle, polarization-independent and dual-band infrared perfect absorber based on L-shaped metamaterial,” Optics Express, 2015, 23(7): 8670.

    Google Scholar 

  48. [48]

    E. P. J. Parrott, J. A. Zeitler, T. Frišcic, M. Pepper, W. Jones, G. M. Day, et al., “Testing the sensitivity of terahertz spectroscopy to changes in molecular and supramolecular structure: a study of structurally similar cocrystals,” Crystal Growth and Design, 2009, 9(3): 1452–1460.

    Article  Google Scholar 

  49. [49]

    N. Negishi, S. Matsuzawa, K. Takeuchi, and P. Pichat, “Transparent micrometer-thick TiO2 films on SiO2-coated glass prepared by repeated dip-coating/calcination: characteristics and photocatalytic activities for removing acetaldehyde or toluene in air,” Chemistry of Materials, 2007, 19(15): 3808–3814.

    Article  Google Scholar 

Download references

Author information



Corresponding author

Correspondence to Salman Daniel.

Rights and permissions

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Daniel, S., Bawuah, P. Right-Angle Shaped Elements as Dual-Band Metamaterial Absorber in Terahertz. Photonic Sens 10, 233–241 (2020). https://doi.org/10.1007/s13320-019-0573-6

Download citation


  • Metamaterial
  • absorbance
  • photonics devices
  • terahertz