Advertisement

Photonic Sensors

, Volume 8, Issue 2, pp 176–187 | Cite as

Propagation of Electromagnetic Waves in Slab Waveguide Structure Consisting of Chiral Nihility Claddings and Negative-Index Material Core Layer

  • Alaa N. Abu Helal
  • Sofyan A. Taya
  • Khitam Y. Elwasife
Open Access
Regular

Abstract

The dispersion equation of an asymmetric three-layer slab waveguide, in which all layers are chiral materials is presented. Then, the dispersion equation of a symmetric slab waveguide, in which the claddings are chiral materials and the core layer is negative index material, is derived. Normalized cut-off frequencies, field profile, and energies flow of right-handed and left-handed circularly polarized modes are derived and plotted. We consider both odd and even guided modes. Numerical results of guided low-order modes are provided. Some novel features, such as abnormal dispersion curves, are found.

Keywords

Slab waveguides chiral materials left-handed materials 

References

  1. [1]
    V. Veselago, “The electrodynamics of substances with simultaneously negative values of ε and µ,” Soviet Physics Uspekhi, 1968, 10(4): 509–514.CrossRefADSGoogle Scholar
  2. [2]
    H. M. Kullab, I. M. Qadoura, and S. A. Taya, “Slab waveguide sensor with left-handed material core layer for detection an adlayer thickness and index,” Journal of Nano-and Electronic and Physics, 2015, 7(2): 1–6.Google Scholar
  3. [3]
    H. Chen, B. I. Wu, and J. A. Kong, “Review of electromagnetic theory in left-handed materials,” Journal of Electromagnetic Waves & Applications, 2006, 20(15): 2137–2151.CrossRefGoogle Scholar
  4. [4]
    S. A. Taya, E. J. El-Farram, and M. M. Abadla, “Symmetric multilayer slab waveguide structure with a negative index material: TM case,” Optik-Internal Journal for Light and Electron Optics, 2012, 123(24): 2264–2268.CrossRefGoogle Scholar
  5. [5]
    S. A. Taya and I. M. Qadoura, “Guided modes in slab waveguides with negative index cladding and substrate,” Optik–Internal Journal for Light and Electron Optics, 2013, 124(13): 1431–1436.CrossRefGoogle Scholar
  6. [6]
    C. W. Qiu, L. W. Li, N. Burokur, and S. Zouhd, “Chiral nihility effects on energy flow in chiral materials,” Journal of the Optical Society of America A: Optics Image Science & Vision, 2008, 25(1): 55–63.CrossRefADSGoogle Scholar
  7. [7]
    S. A. Taya and K. Y. Elwasife, “Guided modes in a metal-clad waveguide comprising a left-handed material as a guiding layer,” International Journal of Research & Reviews in Applied Sciences, 2012, 13(1): 294–305.MathSciNetGoogle Scholar
  8. [8]
    S. A. Taya, K. Y. Elwasife, and H. M. Kullab, “Dispersion properties of anisotropic-metamaterial slab waveguide structure,” Optica Applicata, 2013, 43(4): 857–869.Google Scholar
  9. [9]
    J. B. Pendry, “Negative refraction makes a perfect lens,” Physical Review Letters, 2000, 85(18): 3966–3969.CrossRefADSGoogle Scholar
  10. [10]
    I. Qadoura, S. Taya, and K. El-Wasife, “Scaling rules for a slab waveguide structure comprising nonlinear and negative index materials,” International Journal of Microwave & Optical Technology, 2012, 7(5): 349–357.Google Scholar
  11. [11]
    J. B. Pendry, A. J. Holden, D. J. Robbins, and W. J. Stewart, “Magnetism from conductors and enhanced nonlinear phenomena,” IEEE Transactions on Microwave Theory and Techniques, 1999, 47(11): 2075–2084.CrossRefADSGoogle Scholar
  12. [12]
    M. M. Abadla and S. A. Taya, “Characteristics of left-handed multilayer slab waveguide structure,” The Islamic University Journal (Series of Natural Studies and Engineering), 2011, 19(1): 57–70.Google Scholar
  13. [13]
    J. B. Pendry, A. J. Holden, D. J. Robbins, and W. J. Stewart, “Low frequency plasmons in thin-wire structures,” Journal of Physics-Condensed Matter, 1998, 1(22): 4785–4809.CrossRefADSGoogle Scholar
  14. [14]
    S. A. Taya, H. M. Kullab, and I. M. Qadoura, “Dispersion properties of slab waveguides with double negative material guiding layer and nonlinear substrate,” Journal of the Optical Society of America B: Optical Physics, 2013, 30(7): 2008–2013.CrossRefADSGoogle Scholar
  15. [15]
    A. Gribe and G. V. Eleftheriades, “Growing evanescent waves in negative-refractive index,” Applied Physics Letters, 2003, 82(12): 1815–1817.CrossRefADSGoogle Scholar
  16. [16]
    M. M. Abadla and S. A. Taya, “Excitation of TE surface polaritons in different structures comprising a left-handed material and a metal,” Optik–Internal Journal for Light and Electron Optics, 2014, 125(3): 1401–1405.CrossRefGoogle Scholar
  17. [17]
    D. K. Qing and G. Chen, “Enhancement of evanescent waves in waveguides using metamaterials of negative permittivity and permeability,” Applied Physics Letters, 2004, 84(5): 669–671.CrossRefADSGoogle Scholar
  18. [18]
    S. A. Taya and K. Y. Elwasife, “Field profile of asymmetric slab waveguide structure with LHM layers,” Journal Nano-and Electronic Physics, 2014, 6(2): 02007–1–02007–5.Google Scholar
  19. [19]
    A. Alu and N. Engheta, “Achieving transparency with plasmonic and metamaterial coatings,” Physical Review E: Statistical Nonlinear & Soft Matter Physics, 2005, 72: 016623–1–016623–10.CrossRefADSGoogle Scholar
  20. [20]
    S. A. Taya, “Dispersion properties of lossy, dispersive, and anisotropic left-handed material slab waveguide,” Optik–Internal Journal for Light and Electron Optics, 2015, 126(4): 1319–1323.CrossRefGoogle Scholar
  21. [21]
    S. A. Taya and D. M. Alamassi, “Reflection and transmission from left-handed material structures using Lorentz and Drude medium models,” Opto-Electronics Review, 2015, 23(3): 214–221.CrossRefGoogle Scholar
  22. [22]
    B. J. Lee, C. Fu, K. Park, and Z. M. Zhang, “Study of the surface and bulk polaritons with a negative index metamaterial,” Journal of the Optical Society of America B: Optical Physic, 2005, 22(5): 1016–1023.CrossRefADSGoogle Scholar
  23. [23]
    R. Shelby, D. Smith, and S. Schultz, “Experimental verification of a negative index of refraction,” Science, 2001, 292(5514): 77–79.CrossRefADSGoogle Scholar
  24. [24]
    T. Ergin, N. Stenger, P. Brenner, J. B. Pendry, and M. Wegener, “Three-dimensional invisibility cloak at optical wavelengths,” Science, 2010, 328(5976): 337–339.CrossRefADSGoogle Scholar
  25. [25]
    L. W. Li, Y. N. Li, T. S. Yeo, J. R. Mosig, and O. J. F. Martin, “A broadband and high-gain metamaterial microstrip antenna,” Applied Physics Letters, 2010, 96(16): 164–165.Google Scholar
  26. [26]
    Z. H. Zhang, Z. P. Wang, and L. H. Wang, “Design principle of single- or double-layer wave-absorbers containing left-handed materials,” Materials and Design, 2009, 30(9): 3908–3912.CrossRefGoogle Scholar
  27. [27]
    H. Kullab, S. Taya, and T. El-Agez, “Metal-clad waveguide sensor using a left-handed material as a core layer,” Journal of the Optical Society of America B: Optical Physics, 2102, 29(5): 959–964.CrossRefGoogle Scholar
  28. [28]
    H. M. Kullab and S. A. Taya, “Peak type metal-clad waveguide sensor using negative index materials,” AEU–Internayional Journal Electronics Communications, 2013, 67(11): 905–992.Google Scholar
  29. [29]
    H. M. Kullab and S. A. Taya, “Transverse magnetic peak type metal-clad optical waveguide sensor,” Optik–Internal Journal for Light and Electron Optics, 2014, 125(1): 97–100.CrossRefGoogle Scholar
  30. [30]
    S. A. Taya and H. M. Kullab, “Optimization of transverse electric peak type metal-clad waveguide sensor using double negative materials,” Applied Physics A, 2014, 116(4): 1841–1846.CrossRefGoogle Scholar
  31. [31]
    S. A. Taya, “Slab waveguide with air core layer and anisotropic left-handed material claddings as a sensor,” Opto-Electronics Review, 2014, 22(4): 252–257.CrossRefADSGoogle Scholar
  32. [32]
    S. A. Taya, “P-polarized surface waves in a slab waveguide with left-handed material for sensing applications,” Journal of Magnetism & Magnetic Materials, 2015, 377: 281–285.CrossRefADSGoogle Scholar
  33. [33]
    S. A. Taya, “Theoretical investigation of slab waveguide sensor using anisotropic metamaterials,” Optica Applicata, 2015, 45(3): 405–417.Google Scholar
  34. [34]
    S. A. Taya, A. A. Jarada, and H. M. Kullab, “Slab waveguide sensor utilizing left-handed material core and substrate layers,” Optik–Internal Journal for Light and Electron Optics, 2016, 127(19): 7732–7739.CrossRefGoogle Scholar
  35. [35]
    S. A. Taya, S. S. Mahdi, A. A. Alkanoo, and I. M. Qadoura, “Slab waveguide with conducting interfaces as an efficient optical sensor: TE case,” Optica Acta International Journal of Optics, 2017, 64(8): 836–843.Google Scholar
  36. [36]
    S. A. Taya, S. A. Shaheen, and A. A. Alkanoo, “Photonic crystal as a refractometric sensor operated in reflection mode,” Superlattices and Microstructures, 2017, 101: 299–305.CrossRefADSGoogle Scholar
  37. [37]
    J. F. Dong and C. Xu, “Characteristics of guided modes in planner chiral nihility meta-material waveguides,” Progress In Electromagnetic Research B, 2009, 14: 107–126.CrossRefGoogle Scholar
  38. [38]
    P. Pelet and N. Engheta, “The theory of chirowaveguides,” IEEE Transactions on Antennas and Propagation, 1990, 38(1): 90–98.MathSciNetCrossRefzbMATHADSGoogle Scholar
  39. [39]
    M. Oksanen, P. Kolivisto, and I. lindell, “Dispersion curves and fields for a chiral slab waveguide,” IEEE Proceedings H-Microwaves, Antennas and Propagation, 1991, 138(4): 327–344.CrossRefGoogle Scholar
  40. [40]
    J. Xiao, K. Zhang, and L. Gong, “Field analysis of a general chiral planer waveguide,” International Journal of lnfrared and Millimeter Waves, 1997, 18(4): 939–948.CrossRefADSGoogle Scholar
  41. [41]
    M. Yokota and Y. Yamanaka, “Dispersion relation and field distribution for a chiral slab waveguide,” International Journal of Microwave and Optical Technology, 2006, 1: 623–627.Google Scholar
  42. [42]
    R. Zhao, T. Koschny, and C. M. Soukoulis, “Chiral metamaterials: retrieval of the effective parameters with and without substrate,” Optics Express, 2010, 18(14): 553–567.CrossRefGoogle Scholar
  43. [43]
    J. F. Dong and J. Li, “Characteristics of guided modes in uniaxial chiral circular waveguides,” Progress In Electromagnetics Research, 2012, 124(124): 331–345.CrossRefGoogle Scholar

Copyright information

© The Author(s) 2018

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Authors and Affiliations

  • Alaa N. Abu Helal
    • 1
  • Sofyan A. Taya
    • 1
  • Khitam Y. Elwasife
    • 1
  1. 1.Physics DepartmentIslamic University of GazaGazaPalestine

Personalised recommendations