Photonic Sensors

, Volume 8, Issue 2, pp 176–187 | Cite as

Propagation of Electromagnetic Waves in Slab Waveguide Structure Consisting of Chiral Nihility Claddings and Negative-Index Material Core Layer

  • Alaa N. Abu Helal
  • Sofyan A. Taya
  • Khitam Y. Elwasife
Open Access


The dispersion equation of an asymmetric three-layer slab waveguide, in which all layers are chiral materials is presented. Then, the dispersion equation of a symmetric slab waveguide, in which the claddings are chiral materials and the core layer is negative index material, is derived. Normalized cut-off frequencies, field profile, and energies flow of right-handed and left-handed circularly polarized modes are derived and plotted. We consider both odd and even guided modes. Numerical results of guided low-order modes are provided. Some novel features, such as abnormal dispersion curves, are found.


Slab waveguides chiral materials left-handed materials 


  1. [1]
    V. Veselago, “The electrodynamics of substances with simultaneously negative values of ε and µ,” Soviet Physics Uspekhi, 1968, 10(4): 509–514.CrossRefADSGoogle Scholar
  2. [2]
    H. M. Kullab, I. M. Qadoura, and S. A. Taya, “Slab waveguide sensor with left-handed material core layer for detection an adlayer thickness and index,” Journal of Nano-and Electronic and Physics, 2015, 7(2): 1–6.Google Scholar
  3. [3]
    H. Chen, B. I. Wu, and J. A. Kong, “Review of electromagnetic theory in left-handed materials,” Journal of Electromagnetic Waves & Applications, 2006, 20(15): 2137–2151.CrossRefGoogle Scholar
  4. [4]
    S. A. Taya, E. J. El-Farram, and M. M. Abadla, “Symmetric multilayer slab waveguide structure with a negative index material: TM case,” Optik-Internal Journal for Light and Electron Optics, 2012, 123(24): 2264–2268.CrossRefGoogle Scholar
  5. [5]
    S. A. Taya and I. M. Qadoura, “Guided modes in slab waveguides with negative index cladding and substrate,” Optik–Internal Journal for Light and Electron Optics, 2013, 124(13): 1431–1436.CrossRefGoogle Scholar
  6. [6]
    C. W. Qiu, L. W. Li, N. Burokur, and S. Zouhd, “Chiral nihility effects on energy flow in chiral materials,” Journal of the Optical Society of America A: Optics Image Science & Vision, 2008, 25(1): 55–63.CrossRefADSGoogle Scholar
  7. [7]
    S. A. Taya and K. Y. Elwasife, “Guided modes in a metal-clad waveguide comprising a left-handed material as a guiding layer,” International Journal of Research & Reviews in Applied Sciences, 2012, 13(1): 294–305.MathSciNetGoogle Scholar
  8. [8]
    S. A. Taya, K. Y. Elwasife, and H. M. Kullab, “Dispersion properties of anisotropic-metamaterial slab waveguide structure,” Optica Applicata, 2013, 43(4): 857–869.Google Scholar
  9. [9]
    J. B. Pendry, “Negative refraction makes a perfect lens,” Physical Review Letters, 2000, 85(18): 3966–3969.CrossRefADSGoogle Scholar
  10. [10]
    I. Qadoura, S. Taya, and K. El-Wasife, “Scaling rules for a slab waveguide structure comprising nonlinear and negative index materials,” International Journal of Microwave & Optical Technology, 2012, 7(5): 349–357.Google Scholar
  11. [11]
    J. B. Pendry, A. J. Holden, D. J. Robbins, and W. J. Stewart, “Magnetism from conductors and enhanced nonlinear phenomena,” IEEE Transactions on Microwave Theory and Techniques, 1999, 47(11): 2075–2084.CrossRefADSGoogle Scholar
  12. [12]
    M. M. Abadla and S. A. Taya, “Characteristics of left-handed multilayer slab waveguide structure,” The Islamic University Journal (Series of Natural Studies and Engineering), 2011, 19(1): 57–70.Google Scholar
  13. [13]
    J. B. Pendry, A. J. Holden, D. J. Robbins, and W. J. Stewart, “Low frequency plasmons in thin-wire structures,” Journal of Physics-Condensed Matter, 1998, 1(22): 4785–4809.CrossRefADSGoogle Scholar
  14. [14]
    S. A. Taya, H. M. Kullab, and I. M. Qadoura, “Dispersion properties of slab waveguides with double negative material guiding layer and nonlinear substrate,” Journal of the Optical Society of America B: Optical Physics, 2013, 30(7): 2008–2013.CrossRefADSGoogle Scholar
  15. [15]
    A. Gribe and G. V. Eleftheriades, “Growing evanescent waves in negative-refractive index,” Applied Physics Letters, 2003, 82(12): 1815–1817.CrossRefADSGoogle Scholar
  16. [16]
    M. M. Abadla and S. A. Taya, “Excitation of TE surface polaritons in different structures comprising a left-handed material and a metal,” Optik–Internal Journal for Light and Electron Optics, 2014, 125(3): 1401–1405.CrossRefGoogle Scholar
  17. [17]
    D. K. Qing and G. Chen, “Enhancement of evanescent waves in waveguides using metamaterials of negative permittivity and permeability,” Applied Physics Letters, 2004, 84(5): 669–671.CrossRefADSGoogle Scholar
  18. [18]
    S. A. Taya and K. Y. Elwasife, “Field profile of asymmetric slab waveguide structure with LHM layers,” Journal Nano-and Electronic Physics, 2014, 6(2): 02007–1–02007–5.Google Scholar
  19. [19]
    A. Alu and N. Engheta, “Achieving transparency with plasmonic and metamaterial coatings,” Physical Review E: Statistical Nonlinear & Soft Matter Physics, 2005, 72: 016623–1–016623–10.CrossRefADSGoogle Scholar
  20. [20]
    S. A. Taya, “Dispersion properties of lossy, dispersive, and anisotropic left-handed material slab waveguide,” Optik–Internal Journal for Light and Electron Optics, 2015, 126(4): 1319–1323.CrossRefGoogle Scholar
  21. [21]
    S. A. Taya and D. M. Alamassi, “Reflection and transmission from left-handed material structures using Lorentz and Drude medium models,” Opto-Electronics Review, 2015, 23(3): 214–221.CrossRefGoogle Scholar
  22. [22]
    B. J. Lee, C. Fu, K. Park, and Z. M. Zhang, “Study of the surface and bulk polaritons with a negative index metamaterial,” Journal of the Optical Society of America B: Optical Physic, 2005, 22(5): 1016–1023.CrossRefADSGoogle Scholar
  23. [23]
    R. Shelby, D. Smith, and S. Schultz, “Experimental verification of a negative index of refraction,” Science, 2001, 292(5514): 77–79.CrossRefADSGoogle Scholar
  24. [24]
    T. Ergin, N. Stenger, P. Brenner, J. B. Pendry, and M. Wegener, “Three-dimensional invisibility cloak at optical wavelengths,” Science, 2010, 328(5976): 337–339.CrossRefADSGoogle Scholar
  25. [25]
    L. W. Li, Y. N. Li, T. S. Yeo, J. R. Mosig, and O. J. F. Martin, “A broadband and high-gain metamaterial microstrip antenna,” Applied Physics Letters, 2010, 96(16): 164–165.Google Scholar
  26. [26]
    Z. H. Zhang, Z. P. Wang, and L. H. Wang, “Design principle of single- or double-layer wave-absorbers containing left-handed materials,” Materials and Design, 2009, 30(9): 3908–3912.CrossRefGoogle Scholar
  27. [27]
    H. Kullab, S. Taya, and T. El-Agez, “Metal-clad waveguide sensor using a left-handed material as a core layer,” Journal of the Optical Society of America B: Optical Physics, 2102, 29(5): 959–964.CrossRefGoogle Scholar
  28. [28]
    H. M. Kullab and S. A. Taya, “Peak type metal-clad waveguide sensor using negative index materials,” AEU–Internayional Journal Electronics Communications, 2013, 67(11): 905–992.Google Scholar
  29. [29]
    H. M. Kullab and S. A. Taya, “Transverse magnetic peak type metal-clad optical waveguide sensor,” Optik–Internal Journal for Light and Electron Optics, 2014, 125(1): 97–100.CrossRefGoogle Scholar
  30. [30]
    S. A. Taya and H. M. Kullab, “Optimization of transverse electric peak type metal-clad waveguide sensor using double negative materials,” Applied Physics A, 2014, 116(4): 1841–1846.CrossRefGoogle Scholar
  31. [31]
    S. A. Taya, “Slab waveguide with air core layer and anisotropic left-handed material claddings as a sensor,” Opto-Electronics Review, 2014, 22(4): 252–257.CrossRefADSGoogle Scholar
  32. [32]
    S. A. Taya, “P-polarized surface waves in a slab waveguide with left-handed material for sensing applications,” Journal of Magnetism & Magnetic Materials, 2015, 377: 281–285.CrossRefADSGoogle Scholar
  33. [33]
    S. A. Taya, “Theoretical investigation of slab waveguide sensor using anisotropic metamaterials,” Optica Applicata, 2015, 45(3): 405–417.Google Scholar
  34. [34]
    S. A. Taya, A. A. Jarada, and H. M. Kullab, “Slab waveguide sensor utilizing left-handed material core and substrate layers,” Optik–Internal Journal for Light and Electron Optics, 2016, 127(19): 7732–7739.CrossRefGoogle Scholar
  35. [35]
    S. A. Taya, S. S. Mahdi, A. A. Alkanoo, and I. M. Qadoura, “Slab waveguide with conducting interfaces as an efficient optical sensor: TE case,” Optica Acta International Journal of Optics, 2017, 64(8): 836–843.Google Scholar
  36. [36]
    S. A. Taya, S. A. Shaheen, and A. A. Alkanoo, “Photonic crystal as a refractometric sensor operated in reflection mode,” Superlattices and Microstructures, 2017, 101: 299–305.CrossRefADSGoogle Scholar
  37. [37]
    J. F. Dong and C. Xu, “Characteristics of guided modes in planner chiral nihility meta-material waveguides,” Progress In Electromagnetic Research B, 2009, 14: 107–126.CrossRefGoogle Scholar
  38. [38]
    P. Pelet and N. Engheta, “The theory of chirowaveguides,” IEEE Transactions on Antennas and Propagation, 1990, 38(1): 90–98.MathSciNetCrossRefzbMATHADSGoogle Scholar
  39. [39]
    M. Oksanen, P. Kolivisto, and I. lindell, “Dispersion curves and fields for a chiral slab waveguide,” IEEE Proceedings H-Microwaves, Antennas and Propagation, 1991, 138(4): 327–344.CrossRefGoogle Scholar
  40. [40]
    J. Xiao, K. Zhang, and L. Gong, “Field analysis of a general chiral planer waveguide,” International Journal of lnfrared and Millimeter Waves, 1997, 18(4): 939–948.CrossRefADSGoogle Scholar
  41. [41]
    M. Yokota and Y. Yamanaka, “Dispersion relation and field distribution for a chiral slab waveguide,” International Journal of Microwave and Optical Technology, 2006, 1: 623–627.Google Scholar
  42. [42]
    R. Zhao, T. Koschny, and C. M. Soukoulis, “Chiral metamaterials: retrieval of the effective parameters with and without substrate,” Optics Express, 2010, 18(14): 553–567.CrossRefGoogle Scholar
  43. [43]
    J. F. Dong and J. Li, “Characteristics of guided modes in uniaxial chiral circular waveguides,” Progress In Electromagnetics Research, 2012, 124(124): 331–345.CrossRefGoogle Scholar

Copyright information

© The Author(s) 2018

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (, which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Authors and Affiliations

  • Alaa N. Abu Helal
    • 1
  • Sofyan A. Taya
    • 1
  • Khitam Y. Elwasife
    • 1
  1. 1.Physics DepartmentIslamic University of GazaGazaPalestine

Personalised recommendations