Photonic Sensors

, Volume 7, Issue 3, pp 211–216 | Cite as

An arc tangent function demodulation method of fiber-optic Fabry-Perot high-temperature pressure sensor

  • Qianyu Ren
  • Junhong Li
  • Yingping Hong
  • Pinggang Jia
  • Jijun Xiong
Open Access


A new demodulation algorithm of the fiber-optic Fabry-Perot cavity length based on the phase generated carrier (PGC) is proposed in this paper, which can be applied in the high-temperature pressure sensor. This new algorithm based on arc tangent function outputs two orthogonal signals by utilizing an optical system, which is designed based on the field-programmable gate array (FPGA) to overcome the range limit of the original PGC arc tangent function demodulation algorithm. The simulation and analysis are also carried on. According to the analysis of demodulation speed and precision, the simulation of different numbers of sampling points, and measurement results of the pressure sensor, the arc tangent function demodulation method has good demodulation results: 1 MHz processing speed of single data and less than 1% error showing practical feasibility in the fiber-optic Fabry-Perot cavity length demodulation of the Fabry-Perot high-temperature pressure sensor.


Arc tangent Fabry-Perot demodulation pressure sensor 



This work was supported by the National Science Fund for Distinguished Young Scholars (No. 51425505) and the National Natural Science Foundation of China (No. 51405454).


  1. [1]
    T. George, K. A. Son, R. A. Powers, L. Y. D. Castillo, and R. Okojie, “Harsh environment microtechnologies for NASA and terrestrial applications,” in Proceeding of IEEE 4th International Conference on Sensors, Irvine, CA, USA, 2005, pp. 1253–1258.Google Scholar
  2. [2]
    G. C. Fang, P. G. Jia, T. Liang, Q. L. Tan, Y. P. hong, W. Y. Liu, et al., “Diaphragm-free fiber-optic Fabry-Perot interferometer based on tapered hollow silica tube,” Optics communications, 2016, 371: 201–205.ADSCrossRefGoogle Scholar
  3. [3]
    Z. H. Yu and A. B. Wang, “Fast demodulation algorithm for multiplexed low-finesse Fabry-Perot interferometers,” Journal of Lightwave Technology, 2016, 34(3): 1015–1019.ADSMathSciNetCrossRefGoogle Scholar
  4. [4]
    J. F. Jiang, T. G. Liu, Y. M. Zhang, L. N. Liu, Y. Zha, F. Zhang, et al., “Development of a parallel demodulation system used for extrinsic Fabry-Perot interferometer and fiber Bragg grating sensors,” Applied Optics, 2006, 45(3): 528–535.ADSCrossRefGoogle Scholar
  5. [5]
    B. Wu, Y. Yuan, J. Yang, A. Zhao, and L. Yuan, “Improved signal demodulation method in optical fiber seismometer,” Sensor Letters, 2012, 10(7): 1402–1406.Google Scholar
  6. [6]
    W. R. Allan, Z. W. Graham, J. R. Zayas, D. P. Roach, and D. A. Horsley, “Multiplexed fiber Bragg grating interrogation system using a microelectromechanical Fabry-Perot tunable filter,” IEEE Sensors Journal, 2009, 9(8): 936–943.CrossRefGoogle Scholar
  7. [7]
    Q. X. Yu and X. L. Zhou, “Pressure sensor based on the fiber-optic extrinsic Fabry-Perot interferometer,” Photonic Sensors, 2011, 1(1): 72–83.ADSMathSciNetCrossRefGoogle Scholar
  8. [8]
    M. Li, B. Tong, N. Arsad, and J. J. Guo, “A double-fiber Fabry-Perot sensor based on modified fringe counting and direct phase demodulation,” Measurement Science & Technology, 2013, 24(9): 094012.ADSCrossRefGoogle Scholar
  9. [9]
    Y. F. Tao, M. Wang, D. M. Guo, X. Q. Ni, and H. Hao, “Nine-point phase demodulation for interferometric measurement,” Optik, 2016, 127(14): 5654–5662.ADSCrossRefGoogle Scholar
  10. [10]
    E. Lu, Z. L. Ran, F. Peng, Z. W. Liu, and F. G. Xu, “Demodulation of micro fiber-optic Fabry-Perot interferometer using subcarrier and dual-wavelength method,” Optics Communications, 2012, 285(6): 1087–1090.ADSCrossRefGoogle Scholar
  11. [11]
    K. Toge and F. Ito, “Recent research and development of optical fiber monitoring in communication systems,” Photonic Sensors, 2013, 3(4): 304–313.ADSCrossRefGoogle Scholar
  12. [12]
    J. H. Xie, F. Y. Wang, Y. Pan, J. J. Wang, Z. L. Hu, Y. M. Hu, “High resolution signal-processing method for extrinsic Fabry-Perot interferometric sensors,” Optical Fiber Technology, 2015, 22: 1–6.ADSCrossRefGoogle Scholar
  13. [13]
    N. Wang, Y. Zhu, T. C. Gong, L. H. Li, and W. M. Chen, “Multichannel fiber optic Fabry-Perot nonscanning correlation demodulator,” Chinese Optics Letters, 2013, 11(7): 10–12.Google Scholar
  14. [14]
    H. T. Chen and Y. C. Liang, “Analysis of the tunable asymmetric fiber F-P cavity for fiber sensor edge-filter demodulation,” in Proceeding of IEEE 2014 International Conference on Consumer Electronics, Shenzhen, 2014, pp. 338–343.Google Scholar
  15. [15]
    “Diaphragm based long cavity Fabry-Perot fiber acoustic sensor using phase generated carrier,” Optics Communications, 2017, 382: 514–518.Google Scholar
  16. [16]
    Y. Liu, L. W. Wang, C. D. Tian, M. Zhang, and Y. Liao, “Analysis and optimization of the PGC method in all digital demodulation systems,” Journal of Lighawave Technology, 2008, 26(17–20): 3225–3233.ADSCrossRefGoogle Scholar
  17. [17]
    Y. J. Wei and Z. H. Zhai, “Error analysis of dual wavelength quadrature phase demodulation for low-finesse Fabry-Perot cavity based fibre optic sensor,” Optik, 2011, 122(14): 1309–1311.ADSCrossRefGoogle Scholar
  18. [18]
    A. L. Zhang and S. Zhang, “High stability fiber-optics sensors with an improved PGC demodulation algorithm,” IEEE Sensors Journal, 2016, 16(21): 7681–7684.Google Scholar
  19. [19]
    S. C. Huang, Y. F. Huang, and F. H. Hwang, “An improved sensitivity normalization technique of PGC demodulation with low minimum phase detection sensitivity using laser modulation to generate carrier signal,” Sensors and Actuators A: Physical, 2013, 191: 1–10.CrossRefGoogle Scholar

Copyright information

© The Author(s) 2017

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (, which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Authors and Affiliations

  • Qianyu Ren
    • 1
    • 2
  • Junhong Li
    • 3
  • Yingping Hong
    • 1
    • 2
  • Pinggang Jia
    • 1
    • 2
  • Jijun Xiong
    • 1
    • 2
  1. 1.Science and Technology on Electronic Test & Measurement LaboratoryNorth University of ChinaTaiyuanChina
  2. 2.Key Laboratory Instrumentation Science & Dynamic Measurement, Ministry of EducationNorth University of ChinaTaiyuanChina
  3. 3.Department of AutomationShanxi UniversityShanxiChina

Personalised recommendations