Photonic Sensors

, Volume 7, Issue 2, pp 131–139 | Cite as

Polymer integrated waveguide optical biosensor by using spectral splitting effect

  • Xiaonan Han
  • Xiuyou Han
  • Yuchen Shao
  • Zhenlin Wu
  • Yuxin Liang
  • Jie Teng
  • Shuhui Bo
  • Geert Morthier
  • Mingshan Zhao
Open Access
Regular

Abstract

The polymer waveguide optical biosensor based on the Mach-Zehnder interferometer (MZI) by using spectral splitting effect is investigated. The MZI based biosensor has two unequal width sensing arms. With the different mode dispersion responses of the two-arm waveguides to the cladding refractive index change, the spectral splitting effect of the output interference spectrum is obtained, inducing a very high sensitivity. The influence of the different mode dispersions between the two-arm waveguides on the spectral splitting characteristic is analyzed. By choosing different lengths of the two unequal width sensing arms, the initial dip wavelength of the interference spectrum and the spectral splitting range can be controlled flexibly. The polymer waveguide optical biosensor is designed, and its sensing property is analyzed. The results show that the sensitivity of the polymer waveguide optical biosensor by using spectral splitting effect is as high as 104 nm/RIU, with an improvement of 2–3 orders of magnitude compared with the slot waveguide based microring biosensor.

Keywords

Optical biosensor integrated waveguide spectral splitting sensitivity 

Notes

Acknowledgment

This work was supported in part by the International Science & Technology Cooperation Program of China (No. 2014DFG32590), National Natural Science Foundation of China (No. 61307040), National R&D Program (No. 2012AA040406), National Pre-Research Foundation of China (No. 614045001035), Natural Science Foundation of Liaoning Province (No. 2014020002), and Fundamental Research Funds for the Central Universities (DUT15ZD231 and DUT2015TD47).

References

  1. [1]
    A. L. Washburn and R. C. Bailey, “Photonics-on-a-chip: recent advances in integrated waveguides as enabling detection elements for real-world, lab-on-a-chip biosensing applications,” Analyst, 2011, 136(2): 227–236.ADSCrossRefGoogle Scholar
  2. [2]
    V. J. Cadarso, A. Llobera, M. Puyol, and H. Schift, “Integrated photonic nanofences: combining subwavelength waveguides with an enhanced evanescent field for sensing applications,” ACS Nano, 2016, 10(1): 778–785.CrossRefGoogle Scholar
  3. [3]
    L. G. Carrascosa, C. S. Huertas, and L. M. Lechuga, “Prospects of optical biosensors for emerging label-free RNA analysis,” Trac Trends in Analytical Chemistry, 2016, 80: 177–189.CrossRefGoogle Scholar
  4. [4]
    E. Makarona, P. Petrou, S. Kakabakos, K. Misiakos, and I. Raptis, “Point-of-need bioanalytics based on planar optical interferometry,” Biotechnology Advances, 2016, 34(3): 209–233.CrossRefGoogle Scholar
  5. [5]
    X. Fan, I. M. White, S. I. Shopova, H. Zhu, J. D. Suter, and Y. Sun, “Sensitive optical biosensors for unlabeled targets: a review,” Analytica Chimica Acta, 2008, 620(1–2): 8–26.CrossRefGoogle Scholar
  6. [6]
    H. N. Daghestani and B. W. Day, “Theory and applications of surface plasmon resonance, resonant mirror, resonant waveguide grating, and dual polarization interferometry biosensors,” Sensors, 2010, 10(11): 9630–9646.CrossRefGoogle Scholar
  7. [7]
    M. Sathish and S. Talabattula, “Polarization analysis of an asymmetrically etched rib waveguide coupler for sensing applications,” Photonic Sensors, 2013, 3(2): 178–183.ADSCrossRefGoogle Scholar
  8. [8]
    J. H. Zhang, F. S. Chen, B. Sun, and K. X. Chen, “Integrated optical waveguide sensor for lighting impulse electric field measurement,” Photonic Sensors, 2014, 4(3): 215–219.ADSCrossRefGoogle Scholar
  9. [9]
    Z. Qi, N. Matsuda, K. Itoh, M. Murabayashi, and C. R. Lavers, “A design for improving the sensitivity of a Mach-Zehnder interferometer to chemical and biological measurands,” Sensors and Actuators B: Chemical, 2002, 81(2–3), 254–258.CrossRefGoogle Scholar
  10. [10]
    S. Dante, D. Duval, B. Sepúlveda, A. B. González-Guerrero, J. R. Sendra, and L. M. Lechuga, “All-optical phase modulation for integrated interferometric biosensors,” Optics Express, 2012, 20(7): 7195–7205.ADSCrossRefGoogle Scholar
  11. [11]
    T. F. Yang, “Optimal design and fabrication of polymeric planar optical waveguide bio-chemical sensor,” Ph.D. dissertation, Jilin University, Jilin, 2014.Google Scholar
  12. [12]
    A. Densmore, D. X. Xu, S. Janz, P. Waldron, T. Mischki, G. Lopinski, et al., “Spiral-path high-sensitivity silicon photonic wire molecular sensor with temperature-independent response,” Optics Letters, 2008, 33(6): 596–598.ADSCrossRefGoogle Scholar
  13. [13]
    Q. Liu, X. Tu, K. W. Kim, J. S. Kee, Y. Shin, K. Han, et al., “Highly sensitive Mach-Zehnder interferometer biosensor based on silicon nitride slot waveguide,” Sensors and Actuators B: Chemical, 2013, 188(11): 681–688.CrossRefGoogle Scholar
  14. [14]
    R. Levy and S. Ruschin, “Critical sensitivity in hetero-modal interferometric sensor using spectral interrogation,” Optics Express, 2008, 16(25): 20516–20521.ADSCrossRefGoogle Scholar
  15. [15]
    R. Levy, S. Ruschin, and D. Goldring, “Critical sensitivity effect in an interferometer sensor,” Optics Letters, 2009, 34(19): 3023–3025.ADSCrossRefGoogle Scholar
  16. [16]
    T. Hutter, S. R. Elliott, and S. Ruschin, “Dynamic range enhancement and phase-ambiguity elimination in wavelength-interrogated interferometric sensor,” Sensors and Actuators B: Chemical, 2013, 178(3): 593–597.CrossRefGoogle Scholar
  17. [17]
    Ormocore Products, Micro Resist Technol. GmbH, Berlin, Germany, 2014.Google Scholar
  18. [18]
    R. Morarescu, P. K. Pal, X. Han, M. Zhao, P. Bienstman, and G. Morthier, “Polymer microring resonators for biosensing applications by nanoimprint lithography,” in The 17th International Conference on Transparent Optical Networks, Hungary, Sept. 5–9, pp. 1–4, 2015.Google Scholar
  19. [19]
    R. Bruck, E. Melnik, P. Muellner, R. Hainberger, and M. Lämmerhofer, “Integrated polymer-based Mach-Zehnder interferometer label-free streptavidin biosensor compatible with injection molding,” Biosensors and Bioelectronics, 2011, 26(9): 3832–3837.CrossRefGoogle Scholar
  20. [20]
    B. Sepúlveda, J. S. D. Río, M. Moreno, F. J. Blanco, K. Mayora, C. Domínguez, et al., “Optical biosensor microsystems based on the integration of highly sensitive Mach-Zehnder interferometer devices,” Journal of Optics A: Pure and Applied Optics, 2006, 8(7): S561–S566.CrossRefGoogle Scholar
  21. [21]
    L. H. Wang, J. Ren, X. Y. Han, T. Claes, X. G. Jian, P. Bienstman, et al., “A label-free optical biosensor built on a low-cost polymer platform,” IEEE Photonics Journal, 2012, 4(3): 920–930.CrossRefGoogle Scholar
  22. [22]
    L. B. Soldano and E. C. M. Pennings, “Optical multi-mode interference devices based on self- imaging: principles and applications,” Journal of Lightwave Technology, 1995, 13(4): 615–627.ADSCrossRefGoogle Scholar
  23. [23]
    Y. C. Shao, X. Y. Han, X. N. Han, Z. L. Lu, Z. L. Wu, J. Teng, et al., “Optimal design of 850 nm 2×2 multimode interference polymer waveguide coupler by imprint technique,” Photonic Sensors, 2016, 6(3): 234–242.ADSCrossRefGoogle Scholar
  24. [24]
    X. N. Han, X. Y. Han, Y. C. Shao, Z. L. Lu, J. Teng, Z. L. Wu, et al., “Study on polymer microring optical biosensor based on slot waveguide,” Acta Optical Sinica, 2016, 38(4): 04130011–04130018.Google Scholar

Copyright information

© The Author(s) 2017

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Authors and Affiliations

  • Xiaonan Han
    • 1
  • Xiuyou Han
    • 1
  • Yuchen Shao
    • 1
  • Zhenlin Wu
    • 1
  • Yuxin Liang
    • 1
    • 4
  • Jie Teng
    • 2
  • Shuhui Bo
    • 3
  • Geert Morthier
    • 4
  • Mingshan Zhao
    • 1
  1. 1.School of Physics and Optoelectronic EngineeringDalian University of TechnologyDalianChina
  2. 2.No. 38 Research InstituteChina Electronics Technology Group CorporationHefeiChina
  3. 3.Technical Institute of Physics and ChemistryChinese Academy of SciencesBeijingChina
  4. 4.Photonics Research Group, Department of Information TechnologyGhent University-IMECGhentBelgium

Personalised recommendations