Advertisement

Photonic Sensors

, Volume 7, Issue 2, pp 148–156 | Cite as

Electromagnetic resonant properties of metal-dielectric-metal (MDM) cylindrical microcavities

  • Hang Heng
  • Rong Wang
Open Access
Regular

Abstract

Optical metamaterials can concentrate light into extremely tiny volumes to enhance their interaction with quantum objects. In this paper, a cylindrical microcavity based on the Au-dielectric-Au sandwiched structure is proposed. Numerical study shows that the cylindrical microcavity has the strong ability of localizing light and confining 103– − 104–fold enhancement of the electromagnetic energy density, which contains the most energy of the incoming light. The enhancement factor of energy density G inside the cavity shows the regularities as the change in the thickness of the dielectric slab, dielectric constant, and the radius of gold disk. At the normal incidence of electromagnetic radiation, the obtained reflection spectra operate in the range from 4.8 μm to 6 μm and with the absorption efficiency C (C=1–Rmin), which can reach 99% by optimizing the structure’s geometry parameters, and the dielectric constant. Due to the symmetry of the cylindrical microcavities, this structure is insensitive to the polarization of the incident wave. The proposed optical metamaterials will have potential applications in the surface enhanced spectroscopy, new plasmonic detectors, bio-sensing, solar cells, etc.

Keywords

Microcavity metal-semiconductor-metal metamaterial 

Notes

Acknowledgment

The authors gratefully acknowledge the financial support provided to this study by the Program of Natural Science Research of Jiangsu Higher Education Institutions of China (Grant No. 14KJB140005).

References

  1. [1]
    G. Q. Liu, F. L. Tang, L. Li, L. X. Gong, and Z. Q. Ye, “Concentration detection of quantum dots in the visible and near-infrared range based on surface plasmon resonance sensor,” Materials Letters, 2011, 65(12): 1998–2000.CrossRefGoogle Scholar
  2. [2]
    Y. Y. Yang, Y. L. Zhang, F. Jin, X. Z. Dong, and X. M. Duan, “Steering the optical response with asymmetric bowtie 2-color controllers in the visible and near infrared range,” Optics Communications, 2011, 284(13): 3474–3478.ADSCrossRefGoogle Scholar
  3. [3]
    D. Owens, C. Fuentes-Hernandez, and B. Kippelen, “Optical properties of one-dimensional metal- dielectric photonic band-gap structures with low index dielectrics,” Thin Solid Films, 2009, 517(8): 2736–2741.ADSCrossRefGoogle Scholar
  4. [4]
    J. Y. Seo, S. Cho, H. Lim, and S. Lee, “Optical and structural properties of metal-dielectric photonic band gap structures,” Current Applied Physics, 2006, 6(6): 62–66.ADSCrossRefGoogle Scholar
  5. [5]
    P. Z. El-Khoury, E. J. Bylaska, and W. P. Hess, “Time domain simulations of chemical bonding effects in surface-enhanced spectroscopy,” Journal of Chemical Physics, 2013, 139(17): 174303-1–174303-5.ADSCrossRefGoogle Scholar
  6. [6]
    C. L. Du, C. J. Du, Y. M. You, Y. Zhu, S. L. Jin, C. J. He, et al., “Numerically investigating the enhanced Raman scattering performance of individual Ag nanowire tips,” Applied Optics, 2011, 50(25): 4922–4926.ADSCrossRefGoogle Scholar
  7. [7]
    L. Zhu, L. Dong, F. Y. Meng, J. H. Fu, and Q. Wu, “Influence of symmetry breaking in a planar metamaterial on transparency effect and sensing application,” Applied Optics, 2012, 51(32): 7794–7799.ADSCrossRefGoogle Scholar
  8. [8]
    T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature, 2001, 86(6): 1114–1117.Google Scholar
  9. [9]
    H. F. Ghaemi, T. Thio, and D. E. Grupp, “Surface plasmons enhance optical transmission through subwavelength holes,” Physical Review B, 1998, 58(11): 357–368.CrossRefGoogle Scholar
  10. [10]
    A. J. Haes, S. L. Zou, G. C. Schatz, and R. P. Van Duyne, “Nanoscale optical biosensor: short range distance dependence of the localized surface plasmon resonance of noble metal nanoparticles,” Journal of Physical Chemistry B, 2003, 108(22): 6961–6968.CrossRefGoogle Scholar
  11. [11]
    A. V. Kabashin, P. Sergiy, and A. N. Grigorenko, “Phase and amplitude sensitivities in surface plasmon resonance bio and chemical sensing,” Optics Express, 2009, 17(23): 21191–21204.ADSCrossRefGoogle Scholar
  12. [12]
    R. A. Shelby, D. R. Smith, and S. Schultz, “Experimental verification of a negative index of refraction,” Science, 2001, 292(292): 77–79.ADSCrossRefGoogle Scholar
  13. [13]
    J. Wu, B. Ng, S. P. Turaga, M. B. H. Breese, S. A. Maier, M. Hong, et al., “Free-standing terahertz chiral meta-foils exhibiting strong optical activity and negative refractive index,” Applied Physics Letters, 2013, 103(14): 141106-1–141106-4.ADSCrossRefGoogle Scholar
  14. [14]
    G. Dolling, M. Wegener, C. M. Soukoulis, and S. Linden, “Negative-index metamaterial at 780 nm wavelength,” Optics Letters, 2007, 32(1): 53–55.ADSCrossRefGoogle Scholar
  15. [15]
    F. L. Zhao, B. A. Kamil, C. Evrim, and O. Ekmel, “Complementary chiral metamaterials with giant optical activity and negative refractive index,” Applied Physics Letters, 2011, 98(16): 161907-1–161907-3.CrossRefGoogle Scholar
  16. [16]
    R. Tomer, L. Ye, B. Hsueh, and K. Deisseroth, “Advanced clarity for rapid and high-resolution imaging of intact tissues,” Nature Protocols, 2014, 9(7): 1682–1697.CrossRefGoogle Scholar
  17. [17]
    T. Taubner, D. Korobkin, Y. Urzhumov, G. Shvets, and R. Hillenbrand, “Near-field microscopy through a SiC superlens,” Science, 2006, 313(5793): 1595–1595.CrossRefGoogle Scholar
  18. [18]
    F. I. Baida, M. Boutria, R. Oussaid, and D. Van Labeke, “Enhanced-transmission metamaterials as anisotropic plates,” Physical Review B, 2011, 82(3): 2109–2119.Google Scholar
  19. [19]
    X. R. Huang, R. W. Peng, and R. H. Fan, “Making metals transparent for white light by spoof surface plasmons,” Physical Review Letters, 2010, 105(24): 119–127.CrossRefGoogle Scholar
  20. [20]
    R. H. Fan, R.W. Peng, X. R. Huang, J. Li, Y. Liu, Q. Hu, et al., “Transparent metalsfor ultrabroadband electromagnetic waves,” Advanced Materials, 2012, 24(15): 1980–1986.CrossRefGoogle Scholar
  21. [21]
    N. K. Grady, J. E. Heyes, D. R. Chowdhury, Y. Zeng, M. T. Reiten, A. K. Azad, et al., “Terahertz metamaterials for linear polarization conversion and anomalous refraction,” Science, 2013, 340(6138): 1304–1307.ADSCrossRefGoogle Scholar
  22. [22]
    I. Kogelbauer, E. Heine, C. D’Amboise, C. Müllebner, W. Sokol, and W. Loiskandl, “Adaptation of soil physical measurement techniques for the delineation of mud and lakebed sediments at neusiedler see,” Sensors, 2013, 13(12): 17067–17083.CrossRefGoogle Scholar
  23. [23]
    C. Fevillet-Palma, Y. Todorov, R. Steed, A. Vasanelli, G. Biasiol, L. Sorba, et al., “Extremely sub-wavelength THz metal-dielectric wire microcavities,” Optics Express, 2012, 20(27): 29121–29130.ADSCrossRefGoogle Scholar
  24. [24]
    Y. Todorov, L. Tosetto, J. Teissier, A. M. Andrews, P. Klang, R. Colombelli, et al., “Optical properties of metal-dielectric-metal microcavities in the THz frequency range,” Optics Express, 2010, 18(13): 13886–13907.ADSCrossRefGoogle Scholar
  25. [25]
    C. Fevillet-Palma, Y. Todorow, A. Vasanelli, and C. Sirtori, “Strong near field enhancement in THz nano-antenna arrays,” Sientific Reports, 2013, 3(1): 299–308.Google Scholar
  26. [26]
    X. D. Wang, Y. H. Ye, C. Zhang, Y. Qin, and T. J. Cui, “Tunable figure of merit for a negative-index metamaterial with a sandwich configuration,” Optics Letters, 2009, 34(22): 3568–3570.ADSCrossRefGoogle Scholar
  27. [27]
    K. Chen, Q. Y. Wen, and H. B. Znang, “Study on the broadband terahertz metamaterial absorber,” Electronic Components and Materials, 2011, 30(7): 56–59.Google Scholar
  28. [28]
    N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla. “Perfect metamaterial absorber,” Physical Review Letters, 2008, 100(20): 1586–1594.CrossRefGoogle Scholar

Copyright information

© The Author(s) 2017

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Authors and Affiliations

  1. 1.Center for Analysis and TestingNanjing Normal UniversityNanjingChina
  2. 2.Department of NeurosurgeryNanjing Drum Tower HospitalNanjingChina
  3. 3.The Affiliated Hospital of Nanjing University Medical SchoolNanjingChina

Personalised recommendations