Advertisement

Photonic Sensors

, Volume 7, Issue 2, pp 123–130 | Cite as

Alcohol sensing over O+E+S+C+L+U transmission band based on porous cored octagonal photonic crystal fiber

  • Bikash Kumar Paul
  • Md. Shadidul Islam
  • Kawsar Ahmed
  • Sayed Asaduzzaman
Open Access
Regular

Abstract

A micro structure porous cored octagonal photonic crystal fiber (P-OPCF) has been proposed to sense aqueous analysts (alcohol series) over a wavelength range of 0.80 μm to 2.0 μm. By implementing a full vectorial finite element method (FEM), the numerical simulation on the proposed O-PCF has been analyzed. Numerical investigation shows that high sensitivity can be gained by changing the structural parameters. The obtained result shows the sensitivities of 66.78%, 67.66%, 68.34%, 68.72%, and 69.09%, and the confinement losses of 2.42×10−10 dB/m, 3.28×10−11 dB/m, 1.21×10−6 dB/m, 4.79×10−10 dB/m, and 4.99×10−9 dB/m at the 1.33 μm wavelength for methanol, ethanol, propanol, butanol, and pentanol, respectively can satisfy the condition of much legibility to install an optical system. The effects of the varying core and cladding diameters, pitch distance, operating wavelength, and effective refractive index are also reported here. It reflects that a significant sensitivity and low confinement loss can be achieved by the proposed P-OPCF. The proposed P-OPCF also covers the wavelength band (O+E+S+C+L+U). The investigation also exhibits that the sensitivity increases when the wavelength increases like SO-band<SE-band <SS-band < SC-band <SL-band <SU-band. This research observation has much pellucidity which has remarkable impact on the field of optical fiber sensor.

Keywords

Porous cored OPCF alcohol sensor sensitivity confinement loss transmission band 

Notes

Acknowledgment

The authors are grateful to all of the subjects who participated in this research.

References

  1. [1]
    X. Sang, P. L. Chu, and C. Yu, “Applications of nonlinear effects in highly nonlinear photonic crystal fiber to optical communications,” Optical and Quantum Electronics, 2005, 37(10): 965–994.CrossRefGoogle Scholar
  2. [2]
    K. P. Hansen, “Introduction to nonlinear photonic crystal fibers,” Journal of Optical and Fiber Communications Reports, 2005, 2(3): 226–254.CrossRefGoogle Scholar
  3. [3]
    A. Ortigosa-Blanch, J. C. Knight, W. J. Wadsworth, J. Arriaga, B. J. Mangan, T. A. Birks, et al., “Highly birefringent photonic crystal fibers,” Optics Letters, 2000, 25(18): 1325–1327.ADSCrossRefGoogle Scholar
  4. [4]
    T. P. Hansen, J. Broeng, S. E. Libori, E. Knudsen, A. Bjarklev, J. R. Jensen, et al., “Highly birefringent index-guiding photonic crystal fibers,” IEEE Photonics Technology Letters, 2001, 13(6): 588–590.ADSCrossRefGoogle Scholar
  5. [5]
    G. An, S. Li, X. Yan, X. Zhang, Z. Yuan, and Y. Zhang, “High-sensitivity and tunable refractive index sensor based on dual-core photonic crystal fiber,” Journal of the Optical Society of America B, 2016, 33(7): 1330–1334.CrossRefGoogle Scholar
  6. [6]
    W. Qianet, C. L. Zhao, S. He, X. Dong, S. Zhang, Z. Zhang, et al., “High-sensitivity temperature sensor based on an alcohol-filled photonic crystal fiber loop mirror,” Optics Letters, 2011, 36(9): 1548–1550.ADSCrossRefGoogle Scholar
  7. [7]
    S. Olyaee and F. Taghipour, “Ultra-flattened dispersion hexagonal photonic crystal fiber with low confinement loss and large effective area,” IET Optoelectronics, 2012, 6(2): 82–87.CrossRefGoogle Scholar
  8. [8]
    Aihan-Yin and L. Xiong, “Highly nonlinear with low confinement losses square photonic crystal fiber based on a four-hole unit,” Infrared Physics & Technology, 2014, 66(9): 29–33.ADSCrossRefGoogle Scholar
  9. [9]
    K. Kishor, R. K. Sinha, and A. D. Varshney, “Experimental verification of improved effective index method for endlessly single mode photonic crystal fiber,” Optics and Lasers in Engineering, 2012, 50(2): 182–186.ADSCrossRefGoogle Scholar
  10. [10]
    H. Ademgil and S. Haxha, “Endlessly single mode photonic crystal fiber with improved effective mode area,” Optics Communications, 2012, 285(6): 1514–1518.ADSCrossRefGoogle Scholar
  11. [11]
    T. A. Birks, J. C. Knight, and P. S. J. Russell, “Endlessly single-mode photonic crystal fiber,” Optics Letters, 1997, 22(13): 961–963.ADSCrossRefGoogle Scholar
  12. [12]
    M. Morshed, M. H. Imran, T. K. Roy, M. S. Uddin, and S. M. A. Razzak, “Microstructure core photonic crystal fiber for gas sensing applications,” Applied Optics, 2015, 54(29): 8637–8643.ADSCrossRefGoogle Scholar
  13. [13]
    M. Tonouchi, “Cutting-edge terahertz technology,” Nature Photonics, 2007, 1(2): 97–105.ADSCrossRefGoogle Scholar
  14. [14]
    J. M. Dudley and J. R. Taylor, “Ten years of nonlinear optics in photonic crystal fiber,” Nature Photonics, 2009, 3(2): 85–90.ADSCrossRefGoogle Scholar
  15. [15]
    N. Skivesen, A. Têtu, M. Kristensen, J. Kjems, L. H. Frandsen, and P. I. Borel, “Photonic-crystal waveguide biosensor,” Optics Express, 2007, 15(6): 3169–3176.ADSCrossRefGoogle Scholar
  16. [16]
    Y. L. Hoo, W. Jin, C. Shi, H. L. Ho, D. N. Wang, and S. C. Ruan, “Design and modeling of a photonic crystal fiber gas sensor,” Applied Optics, 2003, 42(18): 3509.3515.CrossRefGoogle Scholar
  17. [17]
    A. M. Cubillaset, S. Unterkofler, T. G. Euser, B. J. Etzold, A. C. Jones, P. J. Sadler, et al., “Photonic crystal fibers for chemical sensing and photochemistry,” Chemical Society Reviews, 2013, 42(22): 8629.8648.Google Scholar
  18. [18]
    S. Okaba, T. Takano, F. Benabid, T. Bradley, L. Vincetti, Z. Maizelis, et al., “Lamb-Dicke spectroscopy of atoms in a hollow-core photonic crystal fiber,” Nature Communications, 2014, 5(5): 4096.4105.Google Scholar
  19. [19]
    P. C. Ashok, R. F. Marchington, P. Mthunzi, T. F. Krauss, and K. Dholakia, “Optical chromatography using a photonic crystal fiber with on-chip fluorescence excitation,” Optics Express, 2010, 18(6): 6396.6407.CrossRefGoogle Scholar
  20. [20]
    S. Roy, “gFiber optic sensor for determining adulteration of petrol and diesel by kerosene,” Sensors and Actuators B: Chemical, 1999, 55(2–3): 212–216.CrossRefGoogle Scholar
  21. [21]
    P. N. Prasad, Introduction to biophotonics. New York, United States: Wiley-Interscience, 2003.CrossRefGoogle Scholar
  22. [22]
    L. V. Doronina-Amitonova, V. F Ilfya, O. I. Ivashkina, M. A. Zots, A. B. Fedotov, K. V. Anokhin, et al., “Photonic-crystal-fiber platform for multicolor multilabel neurophotonic studies,” Applied Physics Letters, 2011, 98(25): 253706–1–253706–3.ADSCrossRefGoogle Scholar
  23. [23]
    H. Shafiee, E. A. Lidstone, M. Jahangir, F. Inci, E. Hanhauser, T. J. Henrich, et al., “Nanostructured optical photonic crystal biosensor for HIV viral load measurement,” Scientific Reports, 2014, 4(6174): 1032–1035.Google Scholar
  24. [24]
    S. C. Buswell, V. A. Wright, J. M. Buriak, V. Van, and S. Evoy, “Specific detection of proteins using photonic crystal waveguides,” Optics Express, 2008, 16(20): 15949–15957.ADSCrossRefGoogle Scholar
  25. [25]
    P. Sharma and P. Sharan, “Design of photonic crystal-based biosensor for detection of glucose concentration in urine,” IEEE Sensors Journal, 2015, 15(2): 1035–1042.CrossRefGoogle Scholar
  26. [26]
    H. Ademgil, “Highly sensitive octagonal photonic crystal fiber based sensor,” Optik.International Journal for Light and Electron Optics, 2014, 125(20): 6274–6278.CrossRefGoogle Scholar
  27. [27]
    J. N. Dash and R. Jha, “Graphene-based birefringent photonic crystal fiber sensor using surface plasmon resonance,” IEEE Photonics Technology Letters, 2014, 26(11): 1092–1095.ADSCrossRefGoogle Scholar
  28. [28]
    B. Temelkuran, S. D. Hart, G. Benoit, J. D. Joannopoulos, and Y. Fink, “Wavelength-scalable hollow optical fibers with large photonic bandgaps for CO2 laser transmission,” Nature, 2002, 420(6916): 650–653.ADSCrossRefGoogle Scholar
  29. [29]
    S. Atakaramians, K. Cook, H. Ebendorff-Heidepriem, J. Canning, D. Abbott, and T. M. Monro, “Cleaving of extremely porous polymer fibers,” IEEE Photonics Journal, 2009, 1(6): 286–292.CrossRefGoogle Scholar
  30. [30]
    P. Yeh, A. Yariv, and E. Marom, “Theory of Bragg fiber,” Journal of the Optical Society of America, 1978, 68(9): 1196.1201. [31] P. Russell, “Photonic crystal fibers,” Science, 2003, 299(5605): 358–362.Google Scholar
  31. [32]
    J. C. Knight, T. A. Birks, P. S. J. Russell, and D. M. Atkin, “All-silica single-mode optical fiber with photonic crystal cladding,” Optics Letters, 1996, 21(19): 1547–1549.ADSCrossRefGoogle Scholar
  32. [33]
    K. Ahmed and M. Morshed, “Design and numerical analysis of microstructured-core octagonal photonic crystal fiber for sensing applications,” Sensing and Bio-Sensing Research, 2016, 7: 1–6.CrossRefGoogle Scholar
  33. [34]
    T. Rylander and J. M. Jin, “Perfectly matched layer for the time domain finite element method,” Journal of Computational Physics, 2004, 200(1): 238–250.ADSCrossRefzbMATHGoogle Scholar
  34. [35]
    G. Ghosh, “Sellmeier coefficients and dispersion of thermo-optic coefficients for some optical glasses,” Applied Optics, 1997, 36(7): 1540–1546.ADSCrossRefGoogle Scholar
  35. [36]
    S. Asaduzzaman, K. Ahmed, M. F. H. Arif, and M. Morshed, “Application of microarray-core based modified photonic crystal fiber in chemical sensing,” in International Conference on Electrical & Electronic Engineering, Bangladesh, Nov. 4–6, 2015.Google Scholar
  36. [37]
    M. S. Habib, M. S. Habib, S. M. A. Razzak, and M. A. Hossain, “Proposal for highly birefringent broadband dispersion compensating octagonal photonic crystal fiber,” Optical Fiber Technology, 2013, 19(5): 461–467.ADSCrossRefGoogle Scholar
  37. [38]
    D. Pysz, I. Kujawa, R. Stępień, M. Klimczak, A. Filipkowski, M. Franczyk, et al., “Stack and draw fabrication of soft glass microstructured fiber optics,” Bulletin of the Polish Academy of Sciences Technical Sciences, 2014, 62(4): 667–682.CrossRefGoogle Scholar
  38. [39]
    H. Ebendorff-Heidepriem and T. M. Monro, “Extrusion of complex performs for microstructured optical fibers,” Optics Express, 2007, 15(23): 15086–15092.ADSCrossRefGoogle Scholar
  39. [40]
    S. Liu, L. Jin, W. Jin, D. Wang, C. Liao, and Y. Wang, “Structural long period gratings made by drilling micro-holes in photonic crystal fibers with a femtosecond infrared laser,” Optics Express, 2010, 18(6): 5496–5503.ADSCrossRefGoogle Scholar
  40. [41]
    H. H. El, Y. Ouerdane, L. Bigot, G. Bouwmans, B. Capoen, A. Boukenter, et al., “Sol-gel derived ionic copper-doped microstructured optical fiber: a potential selective ultraviolet radiation dosimeter,” Optics Express, 2012, 20(28): 29751–29760.ADSCrossRefGoogle Scholar
  41. [42]
    G. Y. Zhou, Z. Y. Hou, S. G. Li, and L. T. Hou, “Fabrication of glass photonic crystal fibers with a die-cast process,” Applied Optics, 2006, 45(18): 4433–4436.CrossRefGoogle Scholar

Copyright information

© The Author(s) 2017

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Authors and Affiliations

  • Bikash Kumar Paul
    • 1
    • 2
  • Md. Shadidul Islam
    • 1
  • Kawsar Ahmed
    • 1
    • 2
  • Sayed Asaduzzaman
    • 1
    • 2
    • 3
  1. 1.Department of Information and Communication TechnologyMawlana Bhashani Science and Technology University SantoshTangailBangladesh
  2. 2.Group of Bio-PhotomatrixTangailBangladesh
  3. 3.Department of Software EngineeringDaffodil International UniversitySukrabad, DhakaBangladesh

Personalised recommendations