Photonic Sensors

, Volume 7, Issue 2, pp 182–192 | Cite as

Modeling of all-optical even and odd parity generator circuits using metal-insulator-metal plasmonic waveguides

Open Access
Regular
  • 239 Downloads

Abstract

Plasmonic metal-insulator-metal (MIM) waveguides sustain excellent property of confining the surface plasmons up to a deep subwavelength scale. In this paper, linear and S-shaped MIM waveguides are cascaded together to design the model of Mach-Zehnder interferometer (MZI). Nonlinear material has been used for switching of light across its output ports. The structures of even and odd parity generators are projected by cascading the MZIs. Parity generator and checker circuit are used for error correction and detection in an optical communication system. Study and analysis of proposed designs are carried out by using the MATLAB simulation and finite-differencetime-domain (FDTD) method.

Keywords

Plasmonics MIM waveguides Mach-Zehnder interferometer nonlinear process FDTD method 

References

  1. [1]
    W. Wei, X. Zhang, and X. Ren, “Asymmetric hybrid plasmonic waveguide with centimetric scale propagation length under subwavelength confinement for photonic components,” Nanoscale Research Letters, 2014, 9(1): 1–8.ADSCrossRefGoogle Scholar
  2. [2]
    W. L. Barnes, A. Dereux, and W. E. Thomas, “Surface plasmon subwavelength optics,” Nature, 2003, 424(6950): 824–830.ADSCrossRefGoogle Scholar
  3. [3]
    D. K. Gramotnev and S. I. Bozhelvonyi, “Plasmonics beyond the diffraction limit,” Nature Photonics, 2010, 4(2): 83–91.ADSCrossRefGoogle Scholar
  4. [4]
    Y. Chen and H. Ming, “Review of surface plasmon resonance and localized surface plasmon resonance sensor,” Photonic Sensors, 2012, 2(1): 37–49.ADSCrossRefGoogle Scholar
  5. [5]
    G. Veronis and S. H. Fan, “Guided subwavelength plasmonic mode supported by a slot in a thin metal film,” Optics Letters, 2005, 30(24): 3359–3361.ADSCrossRefGoogle Scholar
  6. [6]
    L. Liu, H. Zhanghua, and H. Sailing, “Novel surface plasmon waveguide for high integration,” Optics Express, 2015, 13(17): 6645–6650.CrossRefGoogle Scholar
  7. [7]
    A. Boltasseva, S. V. Valentyn, B. N. Rasmus, M. Esteban, G. R. Sergio, and I. B. Sergey, “Triangular metal wedges for subwavelength plasmon polariton guiding at telecom wavelengths,” Optics Express, 2008, 16(8): 5252–5260.ADSCrossRefGoogle Scholar
  8. [8]
    A. Kumar, J. Gosciniak, V. S. Volkov, S. Papaioannou, D. Kalavrouziotis, K. Vyrsokinos, et al., “Dielectric-loaded plasmonic waveguide components: going practical,” Laser & Photonics Reviews, 2013, 7(6): 938–951.CrossRefGoogle Scholar
  9. [9]
    W. L. Barnes, A. Dereux, and T. W. Ebbeen, “Surface plasmon subwavelength optics,” Nature, 2003, 424(6950): 824–830.ADSCrossRefGoogle Scholar
  10. [10]
    R. Charbonneau, N. Lahoud, G. Mattiussi, and P. Berini, “Demonstration of integrated optics elements based on long-ranging surface plasmon polaritons,” Optics Express, 2005, 13(3): 977–984.ADSCrossRefGoogle Scholar
  11. [11]
    L. Liu, Z. Han, and S. He, “Novel surface plasmon waveguide for high integration,” Optics Express, 2005, 13(17): 6645–6650.ADSCrossRefGoogle Scholar
  12. [12]
    J. A. Dionne, L. A. Sweatlock, H. A. Atwater, and A. Polman, “Plasmon slot waveguides: towards chip-scale propagation with subwavelength scale localization,” Physical Review B, 2006, 73(3): 035407–9.ADSCrossRefGoogle Scholar
  13. [13]
    G. Veronis and S. Fan, “Modes of subwavelength plasmonic slot waveguides,” Journal of Lightwave Technology, 2007, 25(9): 2511–2521.ADSCrossRefGoogle Scholar
  14. [14]
    F. Lou, Z. Wang, D. Dai, L. Tylen, and L. Wousnski, “Experimental demonstration of ultra-compact directional couplers based on silicon hybrid plasmonic waveguides,” Applied Physics Letters, 2012, 100(24): 241105-1–241105-4.ADSCrossRefGoogle Scholar
  15. [15]
    M. Z. Alam, J. N. Caspers, J. S. Aitchison, and M. Mojahedi, “Compact low loss and broadband hybrid plasmonic directional coupler,” Optics Express, 2013, 21(13): 16029–16034.ADSCrossRefGoogle Scholar
  16. [16]
    D. K. Gramotnev, K. C. Vernon, and D. F. P. Pile, “Directional coupler using gap plasmon waveguides,” Applied Physics B, 2008, 93(1): 99–106.CrossRefGoogle Scholar
  17. [17]
    Q. Li, Y. Song, G. Zhou, Y. Su, and M. Qiu, “Asymmetric plasmonic-dielectric coupler with short coupling length, high extinction ratio, and low insertion loss,” Optics Letters, 2010, 35(19): 3153–3155.ADSCrossRefGoogle Scholar
  18. [18]
    P. Jia, G. Fang, and D. Wang, “Characterization of miniature fiber-optic Fabry-Perot interferometric sensors based on hollow silica tube,” Photonic Sensors, 2016, 6(3): 193–198.ADSCrossRefGoogle Scholar
  19. [19]
    M. A. Bader, G. Marowsky, A. Bahtiar, K. Koynov, C. Bubeck, H. Tillmann, et al., “Poly (p-phenylenevinylene) derivatives: new promising materials for nonlinear all-optical waveguide switching,” Journal of the Optical Society of America B, 2002, 19(9): 2250–2262.ADSCrossRefGoogle Scholar
  20. [20]
    S. Kumar, Chanderkanta, and A. Amphawan, “Design of parity generator and checker circuit using electro-optic effect of Mach-Zehnder interferomenters,” Optics Communications, 2016, 364: 195–224.ADSCrossRefGoogle Scholar
  21. [21]
    L. Wang, Y. Wang, C. Wu, and F. Wang, “All-optical flip-flop based on coupled SOA-PSW,” Photonic Sensors, 2016, 6(4): 366–371.ADSCrossRefGoogle Scholar
  22. [22]
    X. S. Christina and A. P. Kabilan, “Design of optical logic gates using self-collimated beams in 2d photonic crystal,” Photonic Sensors, 2012, 2(2): 173–179.ADSCrossRefGoogle Scholar
  23. [23]
    J. A. Pereda, A. Vegas, and A. Prieto, “An improved compact 2D full-wave FDTD method for general guided wave structures microwave,” Microwave & Optical Technology Letters, 2003, 38(4): 331–335.CrossRefGoogle Scholar
  24. [24]
    S. Kumar, L. Singh, S. K. Raghuwanshi, and N. K. Chen, “Design of full-adder and full-subtractor using metal-insulator-metal plasmonic waveguides” Plasmonics, 2016, 11: 1–11.CrossRefGoogle Scholar
  25. [25]
    S. Kumar, L. Singh, and S. Swarnakar, “Design of one bit magnitude comparator using nonlinear plasmonic waveguide,” Plasmonics, 2016, 11: 1–7.CrossRefGoogle Scholar
  26. [26]
    S. Kumar and L. Singh, “Proposed new approach to design all optical AND gate using plasmonic based Mach-Zehnder interferometer for high speed communication,” SPIE, 2016, 9884: 98842D.ADSGoogle Scholar
  27. [27]
    S. K. Raghuwanshi, A. Kumar, and S. Kumar, “1×4 signal router using three Mach-Zhender interferometers,” Optical Engineering, 2013, 52(3): 035002-1–035002-9.ADSCrossRefGoogle Scholar
  28. [28]
    G. P. Agrawal, Nonlinear fiber optics. Salt Lake City: Academic Press, 2006.Google Scholar

Copyright information

© The Author(s) 2017

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Authors and Affiliations

  1. 1.Photonics Lab, Department of Electronics and Communication EngineeringDIT UniversityDehradunIndia

Personalised recommendations