Photonic Sensors

, Volume 2, Issue 3, pp 203–214 | Cite as

Use of FBG Sensors for SHM in Aerospace Structures

  • Gayan C. Kahandawa
  • Jayantha Epaarachchi
  • Hao Wang
  • K. T. Lau
Open Access
Regular

Abstract

This paper details some significant findings on the use of the fiber Bragg grating (FBG) sensors for structural health monitoring (SHM) in aerospace fiber reinforced polymer (FRP) structures. A diminutive sensor provides a capability of imbedding inside FRP structures to monitor vital locations of damage. Some practical problems associated with the implementation of FBG based SHM systems in the aerospace FRP structures such as the difficulty of embedding FBG sensors during the manufacturing process and interrelation of distortion to FBG spectra due to internal damage, and other independent effects will be thoroughly studied. An innovative method to interpret FBG signals for identifying damage inside the structures will also be discussed.

Keywords

Structural health monitoring aerospace structures fiber Bragg grating sensors 

References

  1. [1]
    F. K. Chang and K. Y. Chang, “A progressive damage model for laminated composites containing stress-concentrations,” Journal of Composite Materials, vol. 21, no. 9, pp. 834–855, 1987.ADSCrossRefGoogle Scholar
  2. [2]
    M. T. Kortschot and P. W. R. Beaumont, “Damage mechanics of composite materials: I-measurements of damage and strength,” Composites Science and Technology, vol. 39, no. 4, pp. 289–301, 1990.CrossRefGoogle Scholar
  3. [3]
    S. Kamiya and H. Sekine, “Prediction of the fracture strength of notched continuous fiber-reinforced laminates by interlaminar crack extension analysis,” Composites Science and Technology, vol. 56, no. 1, pp. 11–21, 1996.CrossRefGoogle Scholar
  4. [4]
    G. Zhou and L. M Sim, “Damage detection and assessment in fiber-reinforced composite structures with embedded fiber optic sensors-review,” Smart Materials and Structures, vol. 11, no. 6, pp. 925–939, 2002.CrossRefGoogle Scholar
  5. [5]
    F. K. Chang, Structural Health Monitoring. Lancaster: DESTechnol Publications, 2003.Google Scholar
  6. [6]
    M. S. Reveley, T. Kurtoglu, K. M. Leone, J. L. Briggs, and C. A. Withrow, “Assessment of the state of the art of integrated vehicle health management technologies as applicable to damage conditions,” vol. NASA/TM-2010-216911, 2010.Google Scholar
  7. [7]
    K. O. Hill and G. Meltz, “Fiber Bragg grating technology fundamentals and overview,” Journal of Lightwave Technology, vol. 15, no. 8, pp. 1263–1276, 1997.ADSCrossRefGoogle Scholar
  8. [8]
    A. D. Kersey, M. A. Davis, H. J. Patrick, M. LeBlanc, K. P. Koo, C. G. Askins, M. A. Putnam, et al., “Fiber grating sensors,” Journal of Lightwave Technology, vol. 15, no. 8, pp. 1442–1463, 1997.ADSCrossRefGoogle Scholar
  9. [9]
    P. C. Hill and B. J. Eggleton, “Strain gradient chirp of fiber Bragg gratings,” Electronics Letters, vol. 30, no. 14, pp. 1172–1174, 1994.CrossRefGoogle Scholar
  10. [10]
    M. LeBlanc, S. Y. Huang, M. M. Ohn, and R. M. Measures, “Tunable chirping of a fiber Bragg grating using a tapered cantilever bed,” Electronics Letters, vol. 30, no. 25, pp. 2163–2165, 1994.CrossRefGoogle Scholar
  11. [11]
    Y. Okabe, S. Yashiro, T. Kosaka, and N. Takeda, “Detection of transverse cracks in CFRP composites using embedded fiber Bragg grating sensors,” Smart Materials and Structures, vol. 9, no. 6, pp. 832–838, 2000.CrossRefGoogle Scholar
  12. [12]
    S. Takeda, Y. Okabe, and N. Takeda, “Delamination detection in CFRP laminates with embedded small-diameter fiber Bragg grating sensors,” Composites Part A: Applied Science and Manufacturing, vol. 33, no. 7, pp. 971–980, 2002.CrossRefGoogle Scholar
  13. [13]
    Y. Wang, H. Bartelt, W. Ecke, R. Willsch, J. Kobelke, M. Kautz, et al., “Fiber Bragg gratings in small-core Ge-doped photonic crystal fibers,” in Proc. of Asia Pacific Optical Fiber Sensors Conference, Chengdu, China, Nov. 7–9, 2008.Google Scholar
  14. [14]
    L. I. Che-Hsien, K. Nishiguti, and M. Miyatake, “PPP-BOTDA method to achieve 2 cm spatial resolution in Brillouin distributed measuring technique,” in Proc. OFT2008-13, May 15–16, pp. 1–6, 2008.Google Scholar
  15. [15]
    R. Kashyap, Fiber Bragg gratings. San Diego: Academic Press, 1999.Google Scholar
  16. [16]
    A. D. Kersey, M. A. Davis, T. A. Berkoff, D. G. Bellemore, K. P. Koo, and R. TJones, “Progress towards the development of practical fiber Bragg grating instrumentation systems,” in Proc. SPIE, vol. 2839, pp. 40–63, 1996.ADSCrossRefGoogle Scholar
  17. [17]
    J. A. Guemes and J. M. Menéndez, “Response of Bragg grating fiber-optic sensors when embedded in composite laminates,” Composite Science and Technology, vol. 62, no. 2, pp. 959–966, 2002.CrossRefGoogle Scholar
  18. [18]
    E. N. Barton, S. L. Ogin, A. M. Thorne, G. T. Reed, and B. H. Le Page, “Interaction between optical fiber sensors and matrix cracks in cross-ply GRP laminates-part 1: passive optical fibers,” Composite Science and Technology, vol. 61, no. 13, pp. 1863–1869, 2001.CrossRefGoogle Scholar
  19. [19]
    Y. Okabe, R. Tsuji, and N. Takeda, “Application of chirped fiber Bragg grating sensor for identification of crack location in composites,” Composites Part A: Applied Science and Manufacturing, vol. 35, no. 1, pp. 59–65, 2004.CrossRefGoogle Scholar
  20. [20]
    S. Yashiro, N. Takeda, T. Okabe, and H. Sekine, “A new approach to predicting multiple damage states in composite laminates with embedded FBG sensors,” Composites Science and Technology, vol. 65, no. 3–4, pp. 659–667, 2005.CrossRefGoogle Scholar
  21. [21]
    J. A. Eparrachchi, J. Canning, and M. Stevenson, “The response of embedded NIR (830 nm) fiber Bragg grating (FBG) sensors in glass fiber composites under fatigue loading,” Journal of Composite Structures, vol. 44, no. 7, pp. 809–819, 2009.ADSGoogle Scholar
  22. [22]
    K. Peters, M. Studer, J. Botsis, A. Iocco, H. Limberger, and R. Salathé, “Embedded optical fiber Bragg grating sensor in a nonuniform strain field: measurements and simulations,” Experimental Mechanics, vol. 41, no. 1, pp. 19–28, 2001.CrossRefGoogle Scholar
  23. [23]
    M. Wu and W. P. Winfree, “Fiber optic thermal detection of composite delaminations,” in Proc. SPIE, vol. 8013, pp. 801314, 2011.CrossRefGoogle Scholar
  24. [24]
    S. Takeda, Y. Okabe, and N. Takeda, “Monitoring of delamination growth in CFRP laminates using chirped FBG sensors,” Journal of Intelligent Material Systems and Structures, vol. 19, no. 4, pp. 437–444, 2008.CrossRefGoogle Scholar
  25. [25]
    I. Yamauchi, S. Minakuchi, N. Takeda, and Y. Hidose, “Detection of arrested crack in foam core sandwich structures using embedded FBG sensors,” Kanagawa: DEStech Publications Inc., 2008.Google Scholar
  26. [26]
    S. D. Dyer, P. Williams, R. J. Espejo, J. D. Kofler, and M. Etzel, “Fundamental limits in fiber Bragg grating peak wavelength measurements,” in Proc. SPIE, vol. 5855, pp. 88–93, 2005.ADSCrossRefGoogle Scholar
  27. [27]
    G. C. Kahandawa, J. A. Epaarachchi, H. Wang, and J. Canning, “Effects of the self-distortions of embedded FBG sensors on spectral response due to torsional and combined loads,” in Proc. of APWSHM3, Tokyo, Japan, Nov. 30–Dec. 2, 2010.Google Scholar
  28. [28]
    G. C. Kahandawa, J. A. Epaarachchi, H. Wang, D. Followell, P. Birt, J. Canning, and M. Stevenson, “An investigation of spectral response of embedded fiber Bragg grating (FBG) sensors in a hollow composite cylindrical beam under pure torsion and combined loading,” in Proc. of ACAM 6, Perth, Australia, Dec. 13, 2010.Google Scholar
  29. [29]
    G. C. Kahandawa, J. A. Epaarachchi, and H. Wang, “Identification of distortions to FBG spectrum using FBG fixed filters,” in Proc. of ICCM18, Jeju, Korea, Aug. 21–26, 2011.Google Scholar

Copyright information

© The Author(s) 2012

Authors and Affiliations

  • Gayan C. Kahandawa
    • 1
  • Jayantha Epaarachchi
    • 1
  • Hao Wang
    • 1
  • K. T. Lau
    • 1
  1. 1.Centre of Excellence in Engineered Fibre CompositesUniversity of Southern QueenslandToowoombaAustralia

Personalised recommendations