Skip to main content
Log in

Encryption of 3D Point Cloud Using Chaotic Cat Mapping

  • 3DR Express
  • Published:
3D Research

Abstract

3D point clouds, a new primitive representation for objects, are spreading among thousands of people through internet software. Thus, the privacy preserving problem of the 3D point cloud should be widely concerned by more and more people. To ensure the safe transmission and use of point cloud, two schemes of encryption have been proposed by using chaotic cat mapping in this paper. The two encryption schemes are tested by using various types of 3D point clouds. In addition, these proposed encryption algorithms are analyzed through key space, sensibility, statistical and encryption time analysis. These analysis results show that the two proposed schemes can resist the common existing cipher attacks and are effective encryption methods for 3D point cloud encryption. At the same time, the two promising encryption algorithms can guarantee the security of the 3D point cloud model transmitted on the Internet.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Notes

  1. http://www.123dapp.com/.

  2. https://cn.3dsystems.com/software.

References

  1. Guo, K., Zou, D., & Chen, X. (2015). 3D Mesh labeling via deep convolutional neural networks. ACM Transactions on Graphics, 35(1), 1–12.

    Article  Google Scholar 

  2. Peng, X., Sun, B., & Ali, K, et al. (2015). Learning deep object detectors from 3D models. In: IEEE international conference on computer vision (pp. 1278–1286). IEEE Computer Society.

  3. Yuan, C., Yu, X., & Luo, Z. (2017). 3D point cloud matching based on principal component analysis and iterative closest point algorithm. In International conference on audio, language and image processing (pp. 404–408). IEEE.

  4. Aldoma, A., Marton, Z. C., Tombari, F., et al. (2012). Tutorial: Point cloud library: Three-dimensional object recognition and 6 dof pose estimation. IEEE Robotics & Automation Magazine, 19(3), 80–91.

    Article  Google Scholar 

  5. Kuchment, P., & Kunyansky, L. (2015). 2D and 3D reconstructions in acousto-electric tomography. Inverse Problems, 27(5), 55013–55033.

    Article  MathSciNet  MATH  Google Scholar 

  6. Rangel J.C., Morell V., & Cazorla M., et al.(2015). Object recognition in noisy rgb-d data. In Bioinspired computation in artificial systems (pp. 261–270).

  7. Anthes, C., García-Hernández, R. J., & Wiedemann M., et al. (2016). State of the art of virtual reality technology. Aerospace conference (pp. 1–19). IEEE.

  8. Stanisavljević, Ž. S. (2016). Data encryption standard visual representation. In Telecommunications Forum Telfor (pp. 946–953). IEEE.

  9. Herath, U., Alawatugoda, J., & Ragel, R. (2014). Software implementation level countermeasures against the cache timing attack on advanced encryption standard. In IEEE international conference on industrial and information systems (pp. 75–80).

  10. Jukl, M., & Cupera, J. (2016). Using of tiny encryption algorithm in CAN-Bus communication. Research in Agricultural Engineering, 62, 50–55.

    Article  Google Scholar 

  11. Sahu, H. K., Hadhav, V., Sonavane, S., et al. (2016). Cryptanalytic attacks on international data encryption algorithm block cipher. Defence Science Journal, 66(6), 582–589.

    Article  Google Scholar 

  12. Lin, X. J., Sun, L., & Qu, H. (2017). An efficient RSA-based certificateless public key encryption scheme. Discrete Applied Mathematics, 241, 39–47.

    Article  MathSciNet  MATH  Google Scholar 

  13. dos Santos Coelho, L., & Mariani, V. C. (2008). Use of chaotic sequences in a biologically inspired algorithm for engineering design optimization. Expert Systems with Applications, 34(3), 1905–1913.

    Article  Google Scholar 

  14. Saremi, S., Mirjalili, S. M., & Mirjalili, S. (2014). Chaotic krill herd optimization algorithm. Procedia Technology, 12(1), 180–185.

    Article  Google Scholar 

  15. Arora, S., & Anand, P. (2018). Chaotic grasshopper optimization algorithm for global optimization. Neural Computing and Applications, 6, 1–21.

    Google Scholar 

  16. Saremi, S., Mirjalili, S., & Lewis, A. (2014). Biogeography-based optimisation with chaos. Neural Computing and Applications, 25(5), 1077–1097.

    Article  Google Scholar 

  17. Kohli, Mehak, & Arora, Sankalap. (2018). Chaotic grey wolf optimization algorithm for constrained optimization problems. Journal of Computational Design and Engineering, 5, 458–472.

    Article  Google Scholar 

  18. Arora, S., & Singh, S. (2017). An improved butterfly optimization algorithm with chaos. Journal of Intelligent & Fuzzy Systems, 32(1), 1079–1088.

    Article  MATH  Google Scholar 

  19. Arora, S., & Anand, P. (2017). Chaos-enhanced flower pollination algorithms for global optimization. Journal of Intelligent & Fuzzy Systems, 33(1), 2853–3869.

    Google Scholar 

  20. Mostafa, A., Soliman, N. F., Abdalluh, M., & El-Samie, F. E. A. (2016). Speech encryption using two dimensional chaotic maps. In Computer engineering conference (pp. 235–240).

  21. Niu, H., Zhou, C., Wang, B., Zheng, X., & Zhou, S. (2016). Splicing model and hyper–chaotic system for image encryption. Journal of Electrical Engineering, 67(2), 78–86.

    Article  Google Scholar 

  22. Yap, W. S., Phan, C. W., Yau, W. C., et al. (2015). Cryptanalysis of a new image alternate encryption algorithm based on chaotic map. Nonlinear Dynamics, 80(3), 1483–1491.

    Article  MathSciNet  MATH  Google Scholar 

  23. Mohammad Seyedzadeh, S., & Mirzakuchaki, S. (2012). A fast color image encryption algorithm based on coupled two-dimensional piecewise chaotic map. Signal Processing, 92(5), 1202–1215.

    Article  Google Scholar 

  24. Bigdeli, N., Farid, Y., & Afshar, K. (2012). A novel image encryption/decryption scheme based on chaotic neural networks. Engineering Applications of Artificial Intelligence, 25(4), 753–765.

    Article  Google Scholar 

  25. Kumari, M., & Gupta, S. (2018). A novel image encryption scheme based on intertwining chaotic maps and RC4 stream cipher. 3D Research, 9(1), 10–30.

    Article  Google Scholar 

  26. Jin, X., Wu, Z., & Song, C., et al. (2016). 3D Point cloud encryption through chaotic mapping. In Advances in multimedia information processingPCM 2016 (pp. 119–129). Springer International Publishing.

  27. Wu, Z. X., Jin, X., Song, C. G., et al. (2016). Random reversible matrix based point cloud encryption. Journal of system Simulation, 28(10), 2455–2459.

    Google Scholar 

  28. Yang, X., & Zhang, H. (2016). Encryption of 3D point cloud object with deformed fringe. Advances in Optical Technologies, 1, 1–9.

    Article  Google Scholar 

  29. Pradhan, C., Saha, B. J., Kabi, K. K., Arun, & Bisoi, A. K. (2014). Blind watermarking techniques using DCT and arnold 2D cat map for color images. In International conference on communications and signal processing (pp. 026–030).

  30. Kabi, K. K., Saha, B. J., & Chauhan, A., et al. (2015). Implementation of new framework for image encryption using Arnold 3D cat map. In Information systems design and intelligent applications (pp. 379–384). Springer.

  31. Lu, M., Wan, J. W., Guo, Y. L., et al. (2013). Rotational projection statistics for 3D local surface description and object recognition. International Journal of Computer Vision, 105(1), 63–86.

    Article  MathSciNet  MATH  Google Scholar 

  32. H’Roura, J., Roy, M., & Mansouri, A., et al. (2018). Salient spin images: A descriptor for 3D object recognition. In International conference on image and signal processing (pp. 233–242). Springer, Cham.

  33. Zhen, M., Wang, W., & Wang, R. (2015). Signature of unique angles histograms for 3D data description. In IEEE international conference on multimedia & expo workshops (pp. 1–6).

  34. Rimkus, K., Lipnickas, A., & Sinkevicius, S. (2014). Classification of 3D point cloud using numerical surface signatures on interest points. Elektronika Ir Elektrotechnika, 20(6), 8–11.

    Article  Google Scholar 

  35. Yang, J., Cao, Z., & Zhang, Q. (2016). A fast and robust local descriptor for 3D point cloud registration. Information Sciences, 346–347, 163–179.

    Article  Google Scholar 

  36. Li, P., Wang, J., Zhao, Y., Wang, Y., & Yao, Y. (2016). Improved algorithm for point cloud registration based on fast point feature histograms. Journal of Applied Remote Sensing, 10(4), 024–045.

    Google Scholar 

  37. Rusu, R. B., Bradski, G., Thibaux, R., & Hsu, J. (2014). Fast 3D recognition and pose using the viewpoint feature histogram. In IEEE international conference on intelligent robots and systems (pp. 2155–2162).

Download references

Acknowledgements

This work supported by National Young Natural Science Foundation (No. 61702375), China, Key Research Programs of Shandong Province (No. 2016GSF201197), Science and Technology Plan Programs of Colleges and Universities in Shandong Province (No. J16LB11).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Binghui Fan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jia, C., Yang, T., Wang, C. et al. Encryption of 3D Point Cloud Using Chaotic Cat Mapping. 3D Res 10, 4 (2019). https://doi.org/10.1007/s13319-018-0212-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s13319-018-0212-9

Keywords

Navigation