Skip to main content
Log in

3D Parallel Multigrid Methods for Real-Time Fluid Simulation

  • 3DR Express
  • Published:
3D Research

A Correction to this article was published on 06 April 2018

This article has been updated

Abstract

The multigrid method is widely used in fluid simulation because of its strong convergence. In addition to operating accuracy, operational efficiency is also an important factor to consider in order to enable real-time fluid simulation in computer graphics. For this problem, we compared the performance of the Algebraic Multigrid and the Geometric Multigrid in the V-Cycle and Full-Cycle schemes respectively, and analyze the convergence and speed of different methods. All the calculations are done on the parallel computing of GPU in this paper. Finally, we experiment with the 3D-grid for each scale, and give the exact experimental results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Change history

  • 06 April 2018

    Unfortunately, the co-author’s given name has been published incorrectly in the original online publication. The correct given name should be: Suiyun.

References

  1. Briggs, W. L., Henson, V. E., & McCormick, S. F. (2000). A multigrid tutorial (2nd ed.). Philadelphia: SIAM: Society for Industrial and Applied Mathematics.

    Book  MATH  Google Scholar 

  2. Yavneh, I. (1996). On red–black SOR smoothing in multigrid. SIAM Journal on Scientific Computing, 17(1), 180–192.

    Article  MathSciNet  MATH  Google Scholar 

  3. Foster, N., & Fedkiw, R. (2001). Practical animation of liquids. In Proceedings of ACM SIGGRAPH (pp. 23–30).

  4. Chentanez, N., & Müller, M. (2011) Real-time Eulerian water simulation using a restricted tall cell grid. In International conference on computer graphics and interactive techniques (Vol. 30(4)).

  5. Hackbusch, W. (1985). Multi-grid methods and applications. Berlin: Springer.

    Book  MATH  Google Scholar 

  6. Trottenberg, U., Oosterlee, C. W., & Schller, A. (2001). Multigrid. San Diego: Academic Press.

    Google Scholar 

  7. Wesseling, P. (1992). An introduction to multigrid methods. Chichester: Wiley.

    MATH  Google Scholar 

  8. Kronsjö, L., & Dahlquist, G. (1972). On the design of nested iterations for elliptic difference equations. BIT Numerical Mathematics, 12(1), 63–71.

    Article  MathSciNet  MATH  Google Scholar 

  9. Kronsjö, L. (1975). A note on the nested iteration method. BIT Numerical Mathematics, 15, 107–110.

    Article  MathSciNet  MATH  Google Scholar 

  10. Brandt, A. (1977). Multi-level adaptive solutions to boundary-value problems. Mathematics of Computation, 31(138), 333–390.

    Article  MathSciNet  MATH  Google Scholar 

  11. Brandt, A., Mccormick, S. F., & Ruge, J. W. (1985). Algebraic multigrid (AMG) for sparse matrix equations. In D. J. Evans (Ed.), Sparsity and its applications (pp. 257–284). Cambridge: Cambridge University Press.

    Google Scholar 

  12. Napov, A. (2010). Algebraic, analysis of V-cycle multigrid and aggregation-based two-grid methods. Ph.D. thesis, Service de Métrologie Nucléaire. Université Libre de Bruxelles, Brussels, Belgium.

  13. Napov, A., & Notay, Y. (2010). Comparison of bounds for V-cycle multigrid. Applied Numerical Mathematics, 60(3), 176–192.

    Article  MathSciNet  MATH  Google Scholar 

  14. Yan, J., Thiele, F., & Xue, L. (2007). A modified full multigrid algorithm for the Navier–Stokes equations. Computers & Fluids, 36(2), 445–454.

    Article  MATH  Google Scholar 

  15. Jia, S., Xie, H., Xie, M., & Xu, F. (2016). A full multigrid method for nonlinear eigenvalue problems. Science China Mathematics, 59(10), 2037–2048.

    Article  MathSciNet  MATH  Google Scholar 

  16. Butt, M. M., & Borzi, A. (2011). A full multigrid solution of control-constrained Cauchy–Riemann optimal control problems. Journal of Numerical Mathematics, 19(3), 189–214.

    Article  MathSciNet  MATH  Google Scholar 

  17. Watanabe, K., Igarashi, H., & Honma, T. (2005). Comparison of geometric and algebraic multigrid methods in edge-based finite-element analysis. IEEE Transactions on Magnetics, 41(5), 1672–1675.

    Article  Google Scholar 

  18. Wu, C. T., & Elman, H. C. (2007). Analysis and comparison of geometric and algebraic multigrid for convection-diffusion equation. SIAM Journal on Scientific and Statistical Computing, 28(41), 2208–2228.

    MathSciNet  MATH  Google Scholar 

  19. Goddeke, D., Strzodka, R., & Turek, S. (2005). Accelerating double precision FEM simulations with GPUs. In Proceedings of ASIM.

  20. Lentine, M., Wen, Z., & Fedkiw, R. (2010). A novel algorithm for incompressible flow using only a coarse grid projection. ACM Transactions on Graphics, 29(4), 114.

    Article  Google Scholar 

  21. Mcadams, A., Sifakis, E., & Teran, J. (2010). A parallel multigrid poisson solver for fluids simulation on large grids. In Proceedings of ACM SIGGRAPH/eurographics symposium on computer animation (pp. 65–74).

  22. Tamstorf, R., Jones, T. N., & Mccormick, S. F. (2015). Smoothed aggregation multigrid for cloth simulation. ACM Transactions on Graphics, 34(6), 245.

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to acknowledge the support from the National High Technology Research and Development Program of China (“863” Program) [No. 2015AA016404], the Fundamental Research Funds for the Central Universities [No. 3132016310], the Special Research Project of Marine Public Welfare Industry [No. 201505017-4] and the Traffic Youth Science and Technology Talent Project [No. 36260401].

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yong Yin.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wan, F., Yin, Y. & Zhang, S. 3D Parallel Multigrid Methods for Real-Time Fluid Simulation. 3D Res 9, 8 (2018). https://doi.org/10.1007/s13319-018-0157-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s13319-018-0157-z

Keywords

Navigation