3D Research

, 9:8 | Cite as

3D Parallel Multigrid Methods for Real-Time Fluid Simulation

  • Feifei Wan
  • Yong Yin
  • Suiyu Zhang
3DR Express


The multigrid method is widely used in fluid simulation because of its strong convergence. In addition to operating accuracy, operational efficiency is also an important factor to consider in order to enable real-time fluid simulation in computer graphics. For this problem, we compared the performance of the Algebraic Multigrid and the Geometric Multigrid in the V-Cycle and Full-Cycle schemes respectively, and analyze the convergence and speed of different methods. All the calculations are done on the parallel computing of GPU in this paper. Finally, we experiment with the 3D-grid for each scale, and give the exact experimental results.


Fluid simulation Algebraic multigrid (AMG) Geometric multigrid (GMG) V-Cycle Full-Cycle 



The authors would like to acknowledge the support from the National High Technology Research and Development Program of China (“863” Program) [No. 2015AA016404], the Fundamental Research Funds for the Central Universities [No. 3132016310], the Special Research Project of Marine Public Welfare Industry [No. 201505017-4] and the Traffic Youth Science and Technology Talent Project [No. 36260401].


  1. 1.
    Briggs, W. L., Henson, V. E., & McCormick, S. F. (2000). A multigrid tutorial (2nd ed.). Philadelphia: SIAM: Society for Industrial and Applied Mathematics.CrossRefzbMATHGoogle Scholar
  2. 2.
    Yavneh, I. (1996). On red–black SOR smoothing in multigrid. SIAM Journal on Scientific Computing, 17(1), 180–192.MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Foster, N., & Fedkiw, R. (2001). Practical animation of liquids. In Proceedings of ACM SIGGRAPH (pp. 23–30).Google Scholar
  4. 4.
    Chentanez, N., & Müller, M. (2011) Real-time Eulerian water simulation using a restricted tall cell grid. In International conference on computer graphics and interactive techniques (Vol. 30(4)).Google Scholar
  5. 5.
    Hackbusch, W. (1985). Multi-grid methods and applications. Berlin: Springer.CrossRefzbMATHGoogle Scholar
  6. 6.
    Trottenberg, U., Oosterlee, C. W., & Schller, A. (2001). Multigrid. San Diego: Academic Press.Google Scholar
  7. 7.
    Wesseling, P. (1992). An introduction to multigrid methods. Chichester: Wiley.zbMATHGoogle Scholar
  8. 8.
    Kronsjö, L., & Dahlquist, G. (1972). On the design of nested iterations for elliptic difference equations. BIT Numerical Mathematics, 12(1), 63–71.MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Kronsjö, L. (1975). A note on the nested iteration method. BIT Numerical Mathematics, 15, 107–110.MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Brandt, A. (1977). Multi-level adaptive solutions to boundary-value problems. Mathematics of Computation, 31(138), 333–390.MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Brandt, A., Mccormick, S. F., & Ruge, J. W. (1985). Algebraic multigrid (AMG) for sparse matrix equations. In D. J. Evans (Ed.), Sparsity and its applications (pp. 257–284). Cambridge: Cambridge University Press.Google Scholar
  12. 12.
    Napov, A. (2010). Algebraic, analysis of V-cycle multigrid and aggregation-based two-grid methods. Ph.D. thesis, Service de Métrologie Nucléaire. Université Libre de Bruxelles, Brussels, Belgium.Google Scholar
  13. 13.
    Napov, A., & Notay, Y. (2010). Comparison of bounds for V-cycle multigrid. Applied Numerical Mathematics, 60(3), 176–192.MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Yan, J., Thiele, F., & Xue, L. (2007). A modified full multigrid algorithm for the Navier–Stokes equations. Computers & Fluids, 36(2), 445–454.CrossRefzbMATHGoogle Scholar
  15. 15.
    Jia, S., Xie, H., Xie, M., & Xu, F. (2016). A full multigrid method for nonlinear eigenvalue problems. Science China Mathematics, 59(10), 2037–2048.MathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    Butt, M. M., & Borzi, A. (2011). A full multigrid solution of control-constrained Cauchy–Riemann optimal control problems. Journal of Numerical Mathematics, 19(3), 189–214.MathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    Watanabe, K., Igarashi, H., & Honma, T. (2005). Comparison of geometric and algebraic multigrid methods in edge-based finite-element analysis. IEEE Transactions on Magnetics, 41(5), 1672–1675.CrossRefGoogle Scholar
  18. 18.
    Wu, C. T., & Elman, H. C. (2007). Analysis and comparison of geometric and algebraic multigrid for convection-diffusion equation. SIAM Journal on Scientific and Statistical Computing, 28(41), 2208–2228.MathSciNetzbMATHGoogle Scholar
  19. 19.
    Goddeke, D., Strzodka, R., & Turek, S. (2005). Accelerating double precision FEM simulations with GPUs. In Proceedings of ASIM.Google Scholar
  20. 20.
    Lentine, M., Wen, Z., & Fedkiw, R. (2010). A novel algorithm for incompressible flow using only a coarse grid projection. ACM Transactions on Graphics, 29(4), 114.CrossRefGoogle Scholar
  21. 21.
    Mcadams, A., Sifakis, E., & Teran, J. (2010). A parallel multigrid poisson solver for fluids simulation on large grids. In Proceedings of ACM SIGGRAPH/eurographics symposium on computer animation (pp. 65–74).Google Scholar
  22. 22.
    Tamstorf, R., Jones, T. N., & Mccormick, S. F. (2015). Smoothed aggregation multigrid for cloth simulation. ACM Transactions on Graphics, 34(6), 245.CrossRefGoogle Scholar

Copyright information

© 3D Research Center, Kwangwoon University and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Marine Dynamic Simulation and Control Laboratory of Dalian Maritime UniversityDalianChina
  2. 2.School of SoftwareTsinghua UniversityBeijingChina

Personalised recommendations