Therapeutic Update on Huntington’s Disease: Symptomatic Treatments and Emerging Disease-Modifying Therapies

Abstract

Huntington’s disease (HD) is a monogenic neurodegenerative disorder that presents with progressive motor, behavior, and cognitive symptoms leading to early disability and mortality. HD is caused by an expanded CAG repeats in exon 1 of the huntingtin (HTT) gene. The corresponding genetic test allows a clinical, definite diagnosis in life and the identification of a fully penetrant mutation carrier in a premanifest stage. In addition to the development of symptomatic treatments that attempt to address unmet care needs such as apathy, irritability, and cognition, novel therapies that target pathways specific to HD biology are being developed with the intent of slowing disease progression. Among these approaches, HTT protein lowering therapies hold great promise. There are currently active programs using antisense oligonucleotides (ASOs), RNA interference, small-molecule splicing modulators, and zinc-finger protein transcription factor. Except for ASOs and RNA interference approaches, the remaining therapeutic strategies are at a preclinical stage of development. While the current therapeutic landscape in HD may bring an unparalleled change in the lives of people with HD and their families with the first-ever disease-modifying therapy, the evaluation of these therapies requires novel tools that enable a more efficient and expedited discovery and evaluative process. Examples are biomarkers targeting the HTT protein to measure target engagement or disease progression and rating scales more sensitive to the earliest clinical changes. These tools will be instrumental in the next phase of disease-modifying clinical trials in HD likely to target the phenoconversion period of the disease, including the prodromal HD stage.

This is a preview of subscription content, access via your institution.

References

  1. 1.

    Harper P. The epidemiology of Huntington’s disease. Hum Genet. 1992;89(4):365—376.

    CAS  PubMed  Article  Google Scholar 

  2. 2.

    Fisher ER, Hayden MR. Multisource ascertainment of Huntington disease in Canada: prevalence and population at risk. Mov Disord . 2014;29(1):105–114.

    PubMed  Article  Google Scholar 

  3. 3.

    Evans SJW, Douglas I, Rawlins MD, Wexler NS, Tabrizi SJ, Smeeth L. Prevalence of adult Huntington’s disease in the UK based on diagnoses recorded in general practice records. J Neurol Neurosurg Psychiatry. 2013;84(10):1156–1160.

    PubMed  PubMed Central  Article  Google Scholar 

  4. 4.

    Bates GP, Dorsey R, Gusella JF, Hayden MR, Kay C, Leavitt BR, et al. Huntington disease. Nat Rev Dis Primer. 2015;1:15005.

    Article  Google Scholar 

  5. 5.

    Langbehn DR, Brinkman RR, Falush D, Paulsen JS, Hayden MR, International Huntington’s Disease Collaborative Group. A new model for prediction of the age of onset and penetrance for Huntington’s disease based on CAG length. Clin Genet. 2004;65(4):267–277.

    CAS  PubMed  Article  Google Scholar 

  6. 6.

    van Duijn E, Craufurd D, Hubers AAM, Giltay EJ, Bonelli R, Rickards H, et al. Neuropsychiatric symptoms in a European Huntington’s disease cohort (REGISTRY). J Neurol Neurosurg Psychiatry. 2014;85(12):1411–1418.

    PubMed  Article  Google Scholar 

  7. 7.

    Keum JW, Shin A, Gillis T, Mysore JS, Abu Elneel K, Lucente D, et al. The HTT CAG-Expansion Mutation Determines Age at Death but Not Disease Duration in Huntington Disease. Am J Hum Genet. 2016;98(2):287–298.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  8. 8.

    Biglan KM, Zhang Y, Long JD, Geschwind M, Kang GA, Killoran A, et al. Refining the diagnosis of Huntington disease: the PREDICT-HD study. Front Aging Neurosci. 2013;5:12.

    PubMed  PubMed Central  Article  Google Scholar 

  9. 9.

    Tabrizi SJ, Langbehn DR, Leavitt BR, Roos RA, Durr A, Craufurd D, et al. Biological and clinical manifestations of Huntington’s disease in the longitudinal TRACK-HD study: cross-sectional analysis of baseline data. Lancet Neurol. 2009;8(9):791–801.

    PubMed  PubMed Central  Article  Google Scholar 

  10. 10.

    Ross CA, Reilmann R, Cardoso F, McCusker EA, Testa CM, Stout JC, et al. Movement Disorder Society Task Force Viewpoint: Huntington’s Disease Diagnostic Categories. Mov Disord Clin Pract. 2019;6(7):541–546.

    PubMed  PubMed Central  Article  Google Scholar 

  11. 11.

    Pfizer Amaryllis trial ends in disappointment: no improvement in Huntington’s disease symptoms - HDBuzz - Huntington’s disease research news. [Internet]. [cited 2020 May 2]. Available from: https://en.hdbuzz.net/229

  12. 12.

    2016 Conference | CHDI Foundation [Internet]. [cited 2020 May 2]. Available from: https://chdifoundation.org/2016-conference/

  13. 13.

    Reilmann R, McGarry A, Grachev ID, Savola J-M, Borowsky B, Eyal E, et al. Safety and efficacy of pridopidine in patients with Huntington’s disease (PRIDE-HD): a phase 2, randomised, placebo-controlled, multicentre, dose-ranging study. Lancet Neurol. 2019;18(2):165–176.

    CAS  PubMed  Article  Google Scholar 

  14. 14.

    Reilmann R, Rouzade-Dominguez M-L, Saft C, Süssmuth SD, Priller J, Rosser A, et al. A randomized, placebo-controlled trial of AFQ056 for the treatment of chorea in Huntington’s disease. Mov Disord . 2015;30(3):427–431.

    CAS  PubMed  Article  Google Scholar 

  15. 15.

    Gelderblom H, Wüstenberg T, McLean T, Mütze L, Fischer W, Saft C, et al. Bupropion for the treatment of apathy in Huntington’s disease: A multicenter, randomised, double-blind, placebo-controlled, prospective crossover trial. Plos One. 2017;12(3):e0173872–e0173872.

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  16. 16.

    Huntington Study Group Reach2HD Investigators. Safety, tolerability, and efficacy of PBT2 in Huntington’s disease: a phase 2, randomised, double-blind, placebo-controlled trial. Lancet Neurol. 2015;14(1):39–47.

    Article  CAS  Google Scholar 

  17. 17.

    Sage Therapeutics Announces Planned Progression of SAGE-718 to Phase 2 in Huntington’s Disease and Presentations at the 2019 Annual Meeting of the American College of Neuropsychopharmacology (ACNP) [Internet]. Sage Therapeutics, Inc. [cited 2020 May 2]. Available from: https://investor.sagerx.com/news-releases/news-release-details/sage-therapeutics-announces-planned-progression-sage-718-phase-2.

  18. 18.

    López-Sendón Moreno JL, García Caldentey J, Trigo Cubillo P, Ruiz Romero C, García Ribas G, Alonso Arias MAA, et al. A double-blind, randomized, cross-over, placebo-controlled, pilot trial with Sativex in Huntington’s disease. J Neurol. 2016;263(7):1390–1400.

    PubMed  Article  CAS  Google Scholar 

  19. 19.

    Carlozzi NE, Miciura A, Migliore N, Dayalu P. Understanding the Outcomes Measures used in Huntington Disease Pharmacological Trials: A Systematic Review. J Huntingtons Dis. 2014;3(3):233–252

    PubMed  PubMed Central  Article  Google Scholar 

  20. 20.

    Huntington Study Group. Tetrabenazine as antichorea therapy in Huntington disease: a randomized controlled trial. Neurology. 2006;66(3):366–372.

    Article  CAS  Google Scholar 

  21. 21.

    Frank S. Tetrabenazine as anti-chorea therapy in Huntington disease: an open-label continuation study. Huntington Study Group/TETRA-HD Investigators. BMC Neurol. 2009;9:62.

    Google Scholar 

  22. 22.

    Shao L, Hewitt MC. The kinetic isotope effect in the search for deuterated drugs. Drug News Perspect. 2010;23(6):398–404.

    CAS  PubMed  Article  Google Scholar 

  23. 23.

    Huntington Study Group, Frank S, Testa CM, Stamler D, Kayson E, Davis C, et al. Effect of Deutetrabenazine on Chorea Among Patients With Huntington Disease: A Randomized Clinical Trial. JAMA. 2016;316(1):40–50.

    Article  CAS  Google Scholar 

  24. 24.

    Rodrigues FB, Duarte GS, Costa J, Ferreira JJ, Wild EJ. Tetrabenazine Versus Deutetrabenazine for Huntington’s Disease: Twins or Distant Cousins? Mov Disord Clin Pract. 2017;4(4):582–585.

    PubMed  PubMed Central  Article  Google Scholar 

  25. 25.

    Claassen DO, Carroll B, De Boer LM, Wu E, Ayyagari R, Gandhi S, et al. Indirect tolerability comparison of Deutetrabenazine and Tetrabenazine for Huntington disease. J Clin Mov Disord. 2017;4:3.

    PubMed  PubMed Central  Article  Google Scholar 

  26. 26.

    Frank S, Stamler D, Kayson E, Claassen DO, Colcher A, Davis C, et al. Safety of Converting From Tetrabenazine to Deutetrabenazine for the Treatment of Chorea. JAMA Neurol. 2017;74(8):977–982.

    PubMed  PubMed Central  Article  Google Scholar 

  27. 27.

    Efficacy, Safety, and Tolerability of Valbenazine for the Treatment of Chorea Associated With Huntington Disease - Full Text View - ClinicalTrials.gov [Internet]. [cited 2020 Apr 16]. Available from: https://clinicaltrials.gov/ct2/show/NCT04102579

  28. 28.

    Mestre T, Ferreira J, Coelho MM, Rosa M, Sampaio C. Therapeutic interventions for symptomatic treatment in Huntington’s disease. Cochrane Database Syst Rev. 2009;(3):CD006456.

  29. 29.

    Burgunder J-M, Guttman M, Perlman S, Goodman N, van Kammen DP, Goodman L. An International Survey-based Algorithm for the Pharmacologic Treatment of Chorea in Huntington’s Disease. PLoS Curr. 2011 ;3:RRN1260.

    PubMed  PubMed Central  Article  Google Scholar 

  30. 30.

    Jankovic J, Roos RAC. Chorea associated with Huntington’s disease: to treat or not to treat? Mov Disord . 2014;29(11):1414–1418.

    PubMed  Article  Google Scholar 

  31. 31.

    Hariz M, Tabrizi S. Patients with Huntington’s disease pioneered human stereotactic neurosurgery 70 years ago. Brain J Neurol. 2017;140(9):2516–2519.

    Article  Google Scholar 

  32. 32.

    Fawcett AP, Moro E, Lang AE, Lozano AM, Hutchison WD. Pallidal deep brain stimulation influences both reflexive and voluntary saccades in Huntington’s disease. Mov Disord . 2005;20(3):371–377.

    PubMed  Article  Google Scholar 

  33. 33.

    Hebb MO, Garcia R, Gaudet P, Mendez IM. Bilateral stimulation of the globus pallidus internus to treat choreathetosis in Huntington’s disease: technical case report. Neurosurgery. 2006;58(2):E383; discussion E383.

    PubMed  Article  Google Scholar 

  34. 34.

    Fasano A, Mazzone P, Piano C, Quaranta D, Soleti F, Bentivoglio AR. GPi-DBS in Huntington’s disease: results on motor function and cognition in a 72-year-old case. Mov Disord . 2008;23(9):1289–1292.

    PubMed  Article  Google Scholar 

  35. 35.

    Garcia-Ruiz PJ, Ayerbe J, del Val J, Herranz A. Deep brain stimulation in disabling involuntary vocalization associated with Huntington’s disease. Parkinsonism Relat Disord. 2012;18(6):803–804.

    PubMed  Article  Google Scholar 

  36. 36.

    Velez-Lago FM, Thompson A, Oyama G, Hardwick A, Sporrer JM, Zeilman P, et al. Differential and better response to deep brain stimulation of chorea compared to dystonia in Huntington’s disease. Stereotact Funct Neurosurg. 2013;91(2):129–133.

    PubMed  Article  Google Scholar 

  37. 37.

    Zittel S, Moll CKE, Gulberti A, Tadic V, Rasche D, Bäumer T, et al. Pallidal deep brain stimulation in Huntington’s disease. Parkinsonism Relat Disord. 2015;21(9):1105–1108.

    CAS  PubMed  Article  Google Scholar 

  38. 38.

    Gonzalez V, Cif L, Biolsi B, Garcia-Ptacek S, Seychelles A, Sanrey E, et al. Deep brain stimulation for Huntington’s disease: long-term results of a prospective open-label study. J Neurosurg. 2014;121(1):114–122.

    PubMed  Article  Google Scholar 

  39. 39.

    Wojtecki L, Groiss SJ, Ferrea S, Elben S, Hartmann CJ, Dunnett SB, et al. A Prospective Pilot Trial for Pallidal Deep Brain Stimulation in Huntington’s Disease. Front Neurol. 2015;6:177.

    PubMed  PubMed Central  Article  Google Scholar 

  40. 40.

    Amtage F, Feuerstein TJ, Meier S, Prokop T, Piroth T, Pinsker MO. Hypokinesia upon Pallidal Deep Brain Stimulation of Dystonia: Support of a GABAergic Mechanism. Front Neurol. 2013;4:198.

    PubMed  PubMed Central  Article  Google Scholar 

  41. 41.

    Schrader C, Capelle H-H, Kinfe TM, Blahak C, Bäzner H, Lütjens G, et al. GPi-DBS may induce a hypokinetic gait disorder with freezing of gait in patients with dystonia. Neurology. 2011;77(5):483–488.

    CAS  PubMed  Article  Google Scholar 

  42. 42.

    Deep Brain Stimulation (DBS) of the Globus Pallidus (GP) in Huntington’s Disease (HD) - Full Text View - ClinicalTrials.gov [Internet]. [cited 2020 Apr 3]. Available from: https://clinicaltrials.gov/ct2/show/NCT02535884

  43. 43.

    Low PA, Allsop JL. Huntington’s chorea--the rigid form (Westphal variant) treated with l-DOPA: a case report. Proc Aust Assoc Neurol. 1973;10(0):45–46.

  44. 44.

    Low PA, Allsop JL, Halmagyi GM. Huntington’s chorea: the rigid form (Westphal variant) treated with levodopa. Med J Aust. 1974;1(11):393–394.

    CAS  PubMed  Article  Google Scholar 

  45. 45.

    Saft C, von Hein SM, Lücke T, Thiels C, Peball M, Djamshidian A, et al. Cannabinoids for Treatment of Dystonia in Huntington’s Disease. J Huntingt Dis. 2018;7(2):167–173.

    CAS  Article  Google Scholar 

  46. 46.

    Ho AK, Gilbert AS, Mason SL, Goodman AO, Barker RA. Health-related quality of life in Huntington’s disease: Which factors matter most? Mov Disord . 2009;24(4):574–578.

    PubMed  Article  Google Scholar 

  47. 47.

    Anderson KE, van Duijn E, Craufurd D, Drazinic C, Edmondson M, Goodman N, et al. Clinical Management of Neuropsychiatric Symptoms of Huntington Disease: Expert-Based Consensus Guidelines on Agitation, Anxiety, Apathy, Psychosis and Sleep Disorders. J Huntingt Dis. 7(4):355–366.

  48. 48.

    Groves M, van Duijn E, Anderson K, Craufurd D, Edmondson MC, Goodman N, et al. An International Survey-based Algorithm for the Pharmacologic Treatment of Irritability in Huntington’s Disease. PLoS Curr. 2011;3:RRN1259.

  49. 49.

    Simpson JA, Lovecky D, Kogan J, Vetter LA, Yohrling GJ. Survey of the Huntington’s Disease Patient and Caregiver Community Reveals Most Impactful Symptoms and Treatment Needs. J Huntingt Dis. 2016;5(4):395–403.

    Article  Google Scholar 

  50. 50.

    Li Y, Hai S, Zhou Y, Dong BR. Cholinesterase inhibitors for rarer dementias associated with neurological conditions. Cochrane Database Syst Rev. 2015;(3):CD009444.

  51. 51.

    Travessa AM, Rodrigues FB, Mestre TA, Ferreira JJ. Fifteen Years of Clinical Trials in Huntington’s Disease: A Very Low Clinical Drug Development Success Rate. J Huntingt Dis. 2017;6(2):157–163.

    CAS  Article  Google Scholar 

  52. 52.

    Exciting new Huntingtin lowering tool described - HDBuzz - Huntington’s disease research news. [Internet]. [cited 2020 Apr 21]. Available from: https://en.hdbuzz.net/275

  53. 53.

    Garriga-Canut M, Agustín-Pavón C, Herrmann F, Sánchez A, Dierssen M, Fillat C, et al. Synthetic zinc finger repressors reduce mutant huntingtin expression in the brain of R6/2 mice. Proc Natl Acad Sci U S A. 2012;109(45):E3136–E3145.

  54. 54.

    Agustín-Pavón C, Mielcarek M, Garriga-Canut M, Isalan M. Deimmunization for gene therapy: host matching of synthetic zinc finger constructs enables long-term mutant Huntingtin repression in mice. Mol Neurodegener. 2016;11(1):64.

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  55. 55.

    Yang S, Chang R, Yang H, Zhao T, Hong Y, Kong HE, et al. CRISPR/Cas9-mediated gene editing ameliorates neurotoxicity in mouse model of Huntington’s disease. J Clin Invest. 2017;127(7):2719–24.

    PubMed  PubMed Central  Article  Google Scholar 

  56. 56.

    Monteys AM, Ebanks SA, Keiser MS, Davidson BL. CRISPR/Cas9 Editing of the Mutant Huntingtin Allele In Vitro and In Vivo. Mol Ther J Am Soc Gene Ther. 2017;25(1):12–23.

    CAS  Article  Google Scholar 

  57. 57.

    Shin JW, Kim K-H, Chao MJ, Atwal RS, Gillis T, MacDonald ME, et al. Permanent inactivation of Huntington’s disease mutation by personalized allele-specific CRISPR/Cas9. Hum Mol Genet. 2016;25(20):4566–4576.

    CAS  PubMed  PubMed Central  Google Scholar 

  58. 58.

    Tabrizi SJ, Leavitt BR, Landwehrmeyer GB, Wild EJ, Saft C, Barker RA, et al. Targeting Huntingtin Expression in Patients with Huntington’s Disease. N Engl J Med. 2019;380(24):2307–2316.

    CAS  PubMed  Article  Google Scholar 

  59. 59.

    Wave Life Sciences Announces Topline Data and Addition of Higher Dose Cohort in Ongoing Phase 1b/2a PRECISION-HD2 Trial in Huntington’s Disease [Internet]. Wave Life Sciences. [cited 2020 Mar 31]. Available from: https://ir.wavelifesciences.com/news-releases/news-release-details/wave-life-sciences-announces-topline-data-and-addition-higher. Accessed 31 May 2020

  60. 60.

    A novel gene containing a trinucleotide repeat that is expanded and unstable on Huntington’s disease chromosomes. The Huntington’s Disease Collaborative Research Group. Cell. 1993;72(6):971–983.

  61. 61.

    Tabrizi SJ, Ghosh R, Leavitt BR. Huntingtin Lowering Strategies for Disease Modification in Huntington’s Disease. Neuron. 2019;102(4):899.

    CAS  PubMed  Article  Google Scholar 

  62. 62.

    Yamamoto A, Lucas JJ, Hen R. Reversal of neuropathology and motor dysfunction in a conditional model of Huntington’s disease. Cell. 2000;101(1):57–66.

    CAS  PubMed  Article  Google Scholar 

  63. 63.

    Evers MM, Tran H-D, Zalachoras I, Meijer OC, den Dunnen JT, van Ommen G-JB, et al. Preventing formation of toxic N-terminal huntingtin fragments through antisense oligonucleotide-mediated protein modification. Nucleic Acid Ther. 2014;24(1):4–12.

    CAS  PubMed  Article  Google Scholar 

  64. 64.

    Gagnon KT, Pendergraff HM, Deleavey GF, Swayze EE, Potier P, Randolph J, et al. Allele-selective inhibition of mutant huntingtin expression with antisense oligonucleotides targeting the expanded CAG repeat. Biochemistry. 2010;49(47):10166–10178.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  65. 65.

    Kordasiewicz HB, Stanek LM, Wancewicz EV, Mazur C, McAlonis MM, Pytel KA, et al. Sustained therapeutic reversal of Huntington’s disease by transient repression of huntingtin synthesis. Neuron. 2012;74(6):1031–1044.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  66. 66.

    Southwell AL, Skotte NH, Kordasiewicz HB, Østergaard ME, Watt AT, Carroll JB, et al. In vivo evaluation of candidate allele-specific mutant huntingtin gene silencing antisense oligonucleotides. Mol Ther J Am Soc Gene Ther. 2014;22(12):2093–2106.

    CAS  Article  Google Scholar 

  67. 67.

    Stanek, L.M., Yang, W., Angus, S., Sardi, P.S., Hayden, M.R., Hung, G.H., Bennett, C.F., Cheng, S.H., and Shihabuddin, L.S. (2013). Antisense oligonucleotide-mediated correction of transcriptional dysregulation is correlated with behavioral benefits in the YAC128 mouse model of Huntington’s disease. J. Huntingtons Dis. 2, 217–228.

    CAS  PubMed  Article  Google Scholar 

  68. 68.

    Wang N, Gray M, Lu X-H, Cantle JP, Holley SM, Greiner E, et al. Neuronal targets for reducing mutant huntingtin expression to ameliorate disease in a mouse model of Huntington’s disease. Nat Med. 2014;20(5):536–541.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  69. 69.

    A Study to Evaluate the Efficacy and Safety of Intrathecally Administered RO7234292 (RG6042) in Patients With Manifest Huntington’s Disease - Full Text View - ClinicalTrials.gov [Internet]. [cited 2020 May 1]. Available from: https://clinicaltrials.gov/ct2/show/NCT03761849

  70. 70.

    Østergaard ME, Southwell AL, Kordasiewicz H, Watt AT, Skotte NH, Doty CN, et al. Rational design of antisense oligonucleotides targeting single nucleotide polymorphisms for potent and allele selective suppression of mutant Huntingtin in the CNS. Nucleic Acids Res. 2013;41(21):9634–9650.

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  71. 71.

    Pfister EL, Kennington L, Straubhaar J, Wagh S, Liu W, DiFiglia M, et al. Five siRNAs targeting three SNPs may provide therapy for three-quarters of Huntington’s disease patients. Curr Biol CB. 2009;19(9):774–778.

    CAS  PubMed  Article  Google Scholar 

  72. 72.

    Safety and Tolerability of WVE-120101 in Patients With Huntington’s Disease - Full Text View - ClinicalTrials.gov [Internet]. [cited 2020 May 1]. Available from: https://clinicaltrials.gov/ct2/show/NCT03225833

  73. 73.

    Safety and Tolerability of WVE-120102 in Patients With Huntington’s Disease - Full Text View - ClinicalTrials.gov [Internet]. [cited 2020 May 1]. Available from: https://clinicaltrials.gov/ct2/show/NCT03225846. Accessed 1 May 2020

  74. 74.

    2018 Conference | CHDI Foundation [Internet]. [cited 2020 Mar 31]. Available from: https://chdifoundation.org/2018-conference/. Accessed 31 May 2020

  75. 75.

    Mestre TA, Guttman M. The dawn of a new era for neurodegenerative disorders: Huntington’s disease leading the way. Mov Disord . 2019;34(9):1301–1302.

    PubMed  Article  Google Scholar 

  76. 76.

    McNally EM, Leverson BD. Better living through peptide-conjugated chemistry: next-generation antisense oligonucleotides. J Clin Invest. 2019;129(11):4570–4571.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  77. 77.

    Benizri S, Gissot A, Martin A, Vialet B, Grinstaff MW, Barthélémy P. Bioconjugated Oligonucleotides: Recent Developments and Therapeutic Applications. Bioconjug Chem. 2019;30(2):366–383.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  78. 78.

    Hammond SM, Hazell G, Shabanpoor F, Saleh AF, Bowerman M, Sleigh JN, et al. Systemic peptide-mediated oligonucleotide therapy improves long-term survival in spinal muscular atrophy. Proc Natl Acad Sci U S A. 2016;113(39):10962–10967.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  79. 79.

    Keiser MS, Kordasiewicz HB, McBride JL. Gene suppression strategies for dominantly inherited neurodegenerative diseases: lessons from Huntington’s disease and spinocerebellar ataxia. Hum Mol Genet. 2016;25(R1):R53–R64.

    CAS  PubMed  Article  Google Scholar 

  80. 80.

    Agrawal N, Dasaradhi PVN, Mohmmed A, Malhotra P, Bhatnagar RK, Mukherjee SK. RNA Interference: Biology, Mechanism, and Applications. Microbiol Mol Biol Rev. 2003;67(4):657–685.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  81. 81.

    Miniarikova J, Zanella I, Huseinovic A, van der Zon T, Hanemaaijer E, Martier R, et al. Design, Characterization, and Lead Selection of Therapeutic miRNAs Targeting Huntingtin for Development of Gene Therapy for Huntington’s Disease. Mol Ther Nucleic Acids. 2016;5:e297.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  82. 82.

    Franich NR, Fitzsimons HL, Fong DM, Klugmann M, During MJ, Young D. AAV vector-mediated RNAi of mutant huntingtin expression is neuroprotective in a novel genetic rat model of Huntington’s disease. Mol Ther J Am Soc Gene Ther. 2008;16(5):947–956.

    CAS  Article  Google Scholar 

  83. 83.

    Jackson AL, Linsley PS. Recognizing and avoiding siRNA off-target effects for target identification and therapeutic application. Nat Rev Drug Discov. 2010;9(1):57–67.

    CAS  PubMed  Article  Google Scholar 

  84. 84.

    Rodriguez-Lebron E, Denovan-Wright EM, Nash K, Lewin AS, Mandel RJ. Intrastriatal rAAV-mediated delivery of anti-huntingtin shRNAs induces partial reversal of disease progression in R6/1 Huntington’s disease transgenic mice. Mol Ther J Am Soc Gene Ther. 2005;12(4):618–633.

    CAS  Article  Google Scholar 

  85. 85.

    Stanek LM, Sardi SP, Mastis B, Richards AR, Treleaven CM, Taksir T, et al. Silencing mutant huntingtin by adeno-associated virus-mediated RNA interference ameliorates disease manifestations in the YAC128 mouse model of Huntington’s disease. Hum Gene Ther. 2014;25(5):461–474.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  86. 86.

    Safety and Proof-of-Concept (POC) Study With AMT-130 in Adults With Early Manifest Huntington Disease - Full Text View - ClinicalTrials.gov [Internet]. [cited 2020 Apr 12]. Available from: https://clinicaltrials.gov/ct2/show/NCT0412049.

  87. 87.

    Inc VT. Voyager Therapeutics Announces Preclinical Data for Huntington’s Disease and Amyotrophic Lateral Sclerosis Programs at the Congress of the European Society of Gene and Cell Therapy [Internet]. GlobeNewswire News Room. 2018 [cited 2020 Apr 11]. Available from: http://www.globenewswire.com/news release/2018/10/16/1621781/0/en/Voyager-Therapeutics-Announces-Preclinical-Data-for-Huntington-s-Disease-and-Amyotrophic-Lateral-Sclerosis-Programs-at-the-Congress-of-the-European-Society-of-Gene-and-Cell-Therapy.html

  88. 88.

    ESGCT 27th Annual Congress In collaboration with SETGyc Barcelona, Spain October 22–25, 2019 Abstracts. Hum Gene Ther. 2019;30(11):A1–A221.

    Article  CAS  Google Scholar 

  89. 89.

    Fetcko K, Lukas RV, Watson GA, Zhang L, Dey M. Survival and complications of stereotactic radiosurgery: A systematic review of stereotactic radiosurgery for newly diagnosed and recurrent high-grade gliomas. Medicine (Baltimore). 2017;96(43):e8293.

    PubMed  PubMed Central  Article  Google Scholar 

  90. 90.

    Gray SJ, Woodard KT, Samulski RJ. Viral vectors and delivery strategies for CNS gene therapy. Ther Deliv. 2010t;1(4):517–534.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  91. 91.

    Foust, K.D.; Nurre, E.; Montgomery, C.L.; Hernandez, A.; Chan, C.M.; Kaspar, B.K. Intravascular AAV9 preferentially targets neonatal neurons and adult astrocytes. Nat. Biotechnol. 2009, 27, 59–65

    CAS  PubMed  Article  Google Scholar 

  92. 92.

    Dufour BD, Smith CA, Clark RL, Walker TR, McBride JL. Intrajugular Vein Delivery of AAV9-RNAi Prevents Neuropathological Changes and Weight Loss in Huntington’s Disease Mice. Mol Ther. 2014;22(4):797–810.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  93. 93.

    EHDN Newsletter – 35th edition – European Huntington’s Disease Network [Internet]. [cited 2020 Apr 21]. Available from: http://www.ehdn.org/ehdn-newsletter-35th-edition/

  94. 94.

    Mittelman D, Moye C, Morton J, Sykoudis K, Lin Y, Carroll D, et al. Zinc-finger directed double-strand breaks within CAG repeat tracts promote repeat instability in human cells. Proc Natl Acad Sci. 2009 Jun 16;106(24):9607.

    CAS  PubMed  Article  Google Scholar 

  95. 95.

    Zeitler B, Froelich S, Marlen K, Shivak DA, Yu Q, Li D, et al. Allele-selective transcriptional repression of mutant HTT for the treatment of Huntington’s disease. Nat Med. 2019;25(7):1131–1142.

    CAS  PubMed  Article  Google Scholar 

  96. 96.

    Wild EJ, Tabrizi SJ. Targets for future clinical trials in Huntington’s disease: what’s in the pipeline? Mov Disord . 2014;29(11):1434–1445.

    CAS  PubMed  Article  Google Scholar 

  97. 97.

    Malankhanova TB, Malakhova AA, Medvedev SP, Zakian SM. Modern Genome Editing Technologies in Huntington’s Disease Research. J Huntingt Dis. 2017;6(1):19–31.

    Article  Google Scholar 

  98. 98.

    Fink KD, Deng P, Gutierrez J, Anderson JS, Torrest A, Komarla A, et al. Allele-Specific Reduction of the Mutant Huntingtin Allele Using Transcription Activator-Like Effectors in Human Huntington’s Disease Fibroblasts. Cell Transplant. 2016;25(4):677–686.

    PubMed  PubMed Central  Article  Google Scholar 

  99. 99.

    Jinek M, Chylinski K, Fonfara I, Hauer M, Doudna JA, Charpentier E. A Programmable Dual-RNA–Guided DNA Endonuclease in Adaptive Bacterial Immunity. Science. 2012;337(6096):816–821.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  100. 100.

    Savić N, Schwank G. Advances in therapeutic CRISPR/Cas9 genome editing. Transl Res J Lab Clin Med. 2016;168:15–21.

    Google Scholar 

  101. 101.

    Xu X, Tay Y, Sim B, Yoon S-I, Huang Y, Ooi J, et al. Reversal of Phenotypic Abnormalities by CRISPR/Cas9-Mediated Gene Correction in Huntington Disease Patient-Derived Induced Pluripotent Stem Cells. Stem Cell Rep. 2017;8(3):619–633.

    CAS  Article  Google Scholar 

  102. 102.

    Hsu PD, Scott DA, Weinstein JA, Ran FA, Konermann S, Agarwala V, et al. DNA targeting specificity of RNA-guided Cas9 nucleases. Nat Biotechnol. 2013;31(9):827–832.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  103. 103.

    Yin H, Kauffman KJ, Anderson DG. Delivery technologies for genome editing. Nat Rev Drug Discov. 2017;16(6):387–399.

    CAS  PubMed  Article  Google Scholar 

  104. 104.

    Fan H-C, Chi C-S, Lee Y-J, Tsai J-D, Lin S-Z, Harn H-J. The Role of Gene Editing in Neurodegenerative Diseases. Cell Transplant. 2018;27(3):364–378.

    PubMed  PubMed Central  Article  Google Scholar 

  105. 105.

    Süssmuth SD, Haider S, Landwehrmeyer GB, Farmer R, Frost C, Tripepi G, et al. An exploratory double-blind, randomized clinical trial with selisistat, a SirT1 inhibitor, in patients with Huntington’s disease. Br J Clin Pharmacol. 2015;79(3):465–476.

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  106. 106.

    Reilmann R, Squitieri F, Priller J, Saft C, Mariotti C, Süssmuth S, et al. N02 Safety And Tolerability Of Selisistat For The Treatment Of Huntington’s Disease: Results From A Randomised, Double-blind, Placebo-controlled Phase Ii Trial. J Neurol Neurosurg Amp Psychiatry. 2014;85(Suppl 1):A102.

    Google Scholar 

  107. 107.

    Reilmann R, Gordon MF, Anderson KE, Feigin A, Tabrizi SJ, Leavitt BR, et al. The Efficacy and Safety Results of Laquinimod as a Treatment for Huntington Disease (LEGATO-HD) (S16.007). Neurology. 2019 ;92(15 Supplement):S16.007.

    Google Scholar 

  108. 108.

    Verny C, Bachoud-Lévi A-C, Durr A, Goizet C, Azulay J-P, Simonin C, et al. A randomized, double-blind, placebo-controlled trial evaluating cysteamine in Huntington’s disease. Mov Disord . 2017;32(6):932–936.

    CAS  PubMed  Article  Google Scholar 

  109. 109.

    Cherny RA, Ayton S, Finkelstein DI, Bush AI, McColl G, Massa SM. PBT2 Reduces Toxicity in a C. elegans Model of polyQ Aggregation and Extends Lifespan, Reduces Striatal Atrophy and Improves Motor Performance in the R6/2 Mouse Model of Huntington’s Disease. J Huntingt Dis. 2012;1(2):211–219.

    Article  Google Scholar 

  110. 110.

    Prana Biotech (PRAN) Announces Partial Clinical Hold on PBT2 [Internet]. [cited 2020 Apr 21]. Available from: https://www.streetinsider.com/Corporate+News/Prana+Biotech+%28PRAN%29+Announces+Partial+Clinical+Hold+on+PBT2/10265824.html. Accessed 21 May 2020

  111. 111.

    Jeong H, Then F, Melia TJ, Mazzulli JR, Cui L, Savas JN, et al. Acetylation targets mutant huntingtin to autophagosomes for degradation. Cell. 2009;137(1):60–72.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  112. 112.

    Pallos J, Bodai L, Lukacsovich T, Purcell JM, Steffan JS, Thompson LM, et al. Inhibition of specific HDACs and sirtuins suppresses pathogenesis in a Drosophila model of Huntington’s disease. Hum Mol Genet. 2008;17(23):3767–3775.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  113. 113.

    Smith MR, Syed A, Lukacsovich T, Purcell J, Barbaro BA, Worthge SA, et al. A potent and selective Sirtuin 1 inhibitor alleviates pathology in multiple animal and cell models of Huntington’s disease. Hum Mol Genet. 2014;23(11):2995–3007.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  114. 114.

    Faideau M, Kim J, Cormier K, Gilmore R, Welch M, Auregan G, et al. In vivo expression of polyglutamine-expanded huntingtin by mouse striatal astrocytes impairs glutamate transport: a correlation with Huntington’s disease subjects. Hum Mol Genet. 2010;19(15):3053–3067.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  115. 115.

    Björkqvist M, Wild EJ, Thiele J, Silvestroni A, Andre R, Lahiri N, et al. A novel pathogenic pathway of immune activation detectable before clinical onset in Huntington’s disease. J Exp Med. 2008;205(8):1869–1877.

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  116. 116.

    Sapp E, Kegel KB, Aronin N, Hashikawa T, Uchiyama Y, Tohyama K, et al. Early and progressive accumulation of reactive microglia in the Huntington disease brain. J Neuropathol Exp Neurol. 2001;60(2):161–172.

    CAS  PubMed  Article  Google Scholar 

  117. 117.

    Silvestroni A, Faull RLM, Strand AD, Möller T. Distinct neuroinflammatory profile in post-mortem human Huntington’s disease. Neuroreport. 2009;20(12):1098–1103.

    PubMed  Article  Google Scholar 

  118. 118.

    Crotti A, Benner C, Kerman BE, Gosselin D, Lagier-Tourenne C, Zuccato C, et al. Mutant Huntingtin promotes autonomous microglia activation via myeloid lineage-determining factors. Nat Neurosci. 2014;17(4):513–521.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  119. 119.

    Liddelow SA, Guttenplan KA, Clarke LE, Bennett FC, Bohlen CJ, Schirmer L, et al. Neurotoxic reactive astrocytes are induced by activated microglia. Nature. 2017;541(7638):481–487.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  120. 120.

    Okuno T, Nakatsuji Y, Moriya M, Takamatsu H, Nojima S, Takegahara N, et al. Roles of Sema4D-plexin-B1 interactions in the central nervous system for pathogenesis of experimental autoimmune encephalomyelitis. J Immunol Baltim Md 1950. 2010;184(3):1499–1506.

    CAS  Google Scholar 

  121. 121.

    Roles of Sema4D-plexin-B1 Interactions in the Central Nervous System for Pathogenesis of Experimental Autoimmune Encephalomyelitis - PubMed [Internet]. [cited 2020 Mar 19]. Available from: https://pubmed.ncbi.nlm.nih.gov/20038643/

  122. 122.

    A Study in Subjects With Late Prodromal and Early Manifest Huntington’s Disease (HD) to Assess the Safety, Tolerability, Pharmacokinetics, and Efficacy of Pepinemab (VX15/2503) - Full Text View - ClinicalTrials.gov [Internet]. [cited 2020 Mar 19]. Available from: https://clinicaltrials.gov/ct2/show/NCT02481674

  123. 123.

    Pepinemab (VX15/2503) Neurology | Vaccinex [Internet]. [cited 2020 Mar 19]. Available from: http://www.vaccinex.com/development-programs/vx15-neurology/. Accessed 19 May 2020

  124. 124.

    Wang G, Liu X, Gaertig MA, Li S, Li X-J. Ablation of huntingtin in adult neurons is nondeleterious but its depletion in young mice causes acute pancreatitis. Proc Natl Acad Sci U S A. 2016;113(12):3359–3364.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  125. 125.

    Auerbach W, Hurlbert MS, Hilditch-Maguire P, Wadghiri YZ, Wheeler VC, Cohen SI, et al. The HD mutation causes progressive lethal neurological disease in mice expressing reduced levels of huntingtin. Hum Mol Genet. 2001;10(22):2515–2523.

    CAS  PubMed  Article  Google Scholar 

  126. 126.

    Van Raamsdonk JM, Pearson J, Rogers DA, Bissada N, Vogl AW, Hayden MR, et al. Loss of wild-type huntingtin influences motor dysfunction and survival in the YAC128 mouse model of Huntington disease. Hum Mol Genet. 2005;14(10):1379–1392.

    PubMed  Article  CAS  Google Scholar 

  127. 127.

    Ambrose CM, Duyao MP, Barnes G, Bates GP, Lin CS, Srinidhi J, et al. Structure and expression of the Huntington’s disease gene: evidence against simple inactivation due to an expanded CAG repeat. Somat Cell Mol Genet. 1994;20(1):27–38.

    CAS  PubMed  Article  Google Scholar 

  128. 128.

    Grondin R, Kaytor MD, Ai Y, Nelson PT, Thakker DR, Heisel J, et al. Six-month partial suppression of Huntingtin is well tolerated in the adult rhesus striatum. Brain J Neurol. 2012;135(Pt 4):1197–1209.

    Article  Google Scholar 

  129. 129.

    Southwell AL, Kordasiewicz HB, Langbehn D, Skotte NH, Parsons MP, Villanueva EB, et al. Huntingtin suppression restores cognitive function in a mouse model of Huntington’s disease. Sci Transl Med [Internet]. 2018 Oct 3 [cited 2020 Apr 3];10(461). Available from: https://stm.sciencemag.org/content/10/461/eaar3959

  130. 130.

    Sah DWY, Aronin N. Oligonucleotide therapeutic approaches for Huntington disease. J Clin Invest. 2011 Feb 1;121(2):500–507.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  131. 131.

    Geary RS, Norris D, Yu R, Bennett CF. Pharmacokinetics, biodistribution and cell uptake of antisense oligonucleotides. Adv Drug Deliv Rev. 2015;87:46–51.

    CAS  PubMed  Article  Google Scholar 

  132. 132.

    Two New Treatments for Spinal Muscular Atrophy May Be Clinic... : Neurology Today [Internet]. [cited 2020 Apr 11]. Available from: https://journals.lww.com/neurotodayonline/fulltext/2019/04180/two_new_treatments_for_spinal_muscular_atrophy_may.8.aspx. Accessed 11 May 2020

  133. 133.

    Huntington’s Disease Regulatory Science Consortium (HD-RSC) Inaugural Meeting Summary | Critical Path Institute [Internet]. [cited 2020 May 1]. Available from: https://c-path.org/huntingtons-disease-regulatory-science-consortium-hd-rsc-inaugural-meeting-summary/

  134. 134.

    Tabrizi SJ, Scahill RI, Durr A, Roos RA, Leavitt BR, Jones R, et al. Biological and clinical changes in premanifest and early stage Huntington’s disease in the TRACK-HD study: the 12-month longitudinal analysis. Lancet Neurol. 2011;10(1):31–42.

    PubMed  Article  Google Scholar 

  135. 135.

    Aylward EH, Nopoulos PC, Ross CA, Langbehn DR, Pierson RK, Mills JA, et al. Longitudinal change in regional brain volumes in prodromal Huntington disease. J Neurol Neurosurg Psychiatry. 2011;82(4):405–410.

    PubMed  Article  Google Scholar 

  136. 136.

    Paulsen JS, Langbehn DR, Stout JC, Aylward E, Ross CA, Nance M, et al. Detection of Huntington’s disease decades before diagnosis: the Predict-HD study. J Neurol Neurosurg Psychiatry. 2008;79(8):874–880.

    CAS  PubMed  Article  Google Scholar 

  137. 137.

    Byrne LM, Rodrigues FB, Johnson EB, Wijeratne PA, De Vita E, Alexander DC, et al. Evaluation of mutant huntingtin and neurofilament proteins as potential markers in Huntington’s disease. Sci Transl Med. 2018 12;10(458).

    Google Scholar 

  138. 138.

    Fodale V, Boggio R, Daldin M, Cariulo C, Spiezia MC, Byrne LM, et al. Validation of Ultrasensitive Mutant Huntingtin Detection in Human Cerebrospinal Fluid by Single Molecule Counting Immunoassay. J Huntingt Dis. 2017;6(4):349–361.

    CAS  Article  Google Scholar 

  139. 139.

    Southwell AL, Smith SEP, Davis TR, Caron NS, Villanueva EB, Xie Y, et al. Ultrasensitive measurement of huntingtin protein in cerebrospinal fluid demonstrates increase with Huntington disease stage and decrease following brain huntingtin suppression. Sci Rep. 2015;5:12166.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  140. 140.

    Wild EJ, Boggio R, Langbehn D, Robertson N, Haider S, Miller JRC, et al. Quantification of mutant huntingtin protein in cerebrospinal fluid from Huntington’s disease patients. J Clin Invest. 2015;125(5):1979–1986.

    PubMed  PubMed Central  Article  Google Scholar 

  141. 141.

    iMagemHTT: FIH Evaluation of Novel Mutant Huntingtin PET Radioligands [11C]CHDI-00485180-R and [11C]CHDI-00485626 - Full Text View - ClinicalTrials.gov [Internet]. [cited 2020 Apr 12]. Available from: https://clinicaltrials.gov/ct2/show/NCT03810898. Accessed 1 May 2020

  142. 142.

    Constantinescu R, Romer M, Oakes D, Rosengren L, Kieburtz K. Levels of the light subunit of neurofilament triplet protein in cerebrospinal fluid in Huntington’s disease. Parkinsonism Relat Disord. 2009;15(3):245–248.

    PubMed  Article  Google Scholar 

  143. 143.

    Rodrigues FB, Byrne L, McColgan P, Robertson N, Tabrizi SJ, Leavitt BR, et al. Cerebrospinal fluid total tau concentration predicts clinical phenotype in Huntington’s disease. J Neurochem. 2016;139(1):22–25.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  144. 144.

    Byrne LM, Rodrigues FB, Blennow K, Durr A, Leavitt BR, Roos RAC, et al. Neurofilament light protein in blood as a potential biomarker of neurodegeneration in Huntington’s disease: a retrospective cohort analysis. Lancet Neurol. 2017;16(8):601–609.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Tiago A. Mestre.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(PDF 9050 kb)

ESM 2

(DOCX 145 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Dash, D., Mestre, T.A. Therapeutic Update on Huntington’s Disease: Symptomatic Treatments and Emerging Disease-Modifying Therapies. Neurotherapeutics 17, 1645–1659 (2020). https://doi.org/10.1007/s13311-020-00891-w

Download citation

Key Words

  • Huntington’s disease
  • chorea
  • disease modification
  • therapies