, Volume 15, Issue 2, pp 489–499 | Cite as

Alleviation of Trigeminal Nociception Using p75 Neurotrophin Receptor Targeted Lentiviral Interference Therapy

  • Valerie B. O’Leary
  • Marie O’Connell
  • Inga Antyborzec
  • Vasilis Ntziachristos
  • J. Oliver Dolly
  • Saak V. Ovsepian
Original Article


Acute and chronic trigeminal (TG) neuropathies are the cause of considerable distress, with limited treatments available at present. Nociceptive neurons enriched with the vanilloid type 1 receptor (VR1) partake in pain sensation and sensitization in the TG system. While VR1 blockers with anti-nociceptive potential are of substantial medical interest, their use remains limited due to poor selectivity and lack of cell-targeting capabilities. This study describes a methodology for the alleviation of nociception via targeted depletion of VR1 in TG sensory neurons in rats. In cultured TG ganglion neurons, VR1 expression was virtually abolished by lentiviral short hairpin RNA (LV-VR1). By decorating GFP encoding LV (LV-GFP) and LV-VR1 with IgG192 for targeting TG sensory neurons enriched with the p75 neurotrophin receptor (p75NTR), transduction of a reporter GFP and VR1 depletion was achieved after injection of targeted vectors into the whisker pad. In IgG192/LV-VR1-injected rats, the behavioral response to capsaicin exposure as well as Erk 1/2 phosphorylation and VR1 current activation by capsaicin were significantly reduced. This pioneering investigation, thus, provides a proof of principle for a means of attenuating TG nociception, revealing therapeutic potential.


p75NTR Capsaicin TRPV1 Neuropathic pain Neurotherapeutics 


Funding Information

This work was supported by the Program for Research in Third Level Institutions Cycle 4 grant from the Republic of Ireland Higher Educational Authority for the neuroscience section of “targeted-driven therapeutics and theranostics” (JOD and SVO).

Supplementary material

13311_2018_608_MOESM1_ESM.pdf (1.2 mb)
ESM 1 Required Author Forms Disclosure forms provided by the authors are available with the online version of this article. (PDF 1224 kb)


  1. 1.
    Bouhassira, D., et al., Prevalence of chronic pain with neuropathic characteristics in the general population. Pain, 2008. 136(3): p. 380–7.CrossRefPubMedGoogle Scholar
  2. 2.
    Katusic, S., et al., Incidence and clinical features of trigeminal neuralgia, Rochester, Minnesota, 1945-1984. Ann Neurol, 1990. 27(1): p. 89–95.CrossRefPubMedGoogle Scholar
  3. 3.
    Fothergill, J., Of a painful affection of the face. Medical Observations and Inquiries. 5. 1773, Society of Physicians in London. 129–142.Google Scholar
  4. 4.
    Tolle, T., E. Dukes, and A. Sadosky, Patient burden of trigeminal neuralgia: results from a cross-sectional survey of health state impairment and treatment patterns in six European countries. Pain Pract, 2006. 6(3): 153–60.CrossRefPubMedGoogle Scholar
  5. 5.
    Nurmikko, T.J., Pathophysiology of MS-related trigeminal neuralgia. Pain, 2009. 143(3): 165–6.CrossRefPubMedGoogle Scholar
  6. 6.
    Babu, R. and R. Murali, Arachnoid cyst of the cerebellopontine angle manifesting as contralateral trigeminal neuralgia: case report. Neurosurgery, 1991. 28(6): 886–7.CrossRefPubMedGoogle Scholar
  7. 7.
    Caterina, M.J., et al., The capsaicin receptor: a heat-activated ion channel in the pain pathway. Nature, 1997. 389(6653): 816–24.CrossRefPubMedGoogle Scholar
  8. 8.
    Karai, L., et al., Deletion of vanilloid receptor 1-expressing primary afferent neurons for pain control. J Clin Invest, 2004. 113(9): p. 1344–52.CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Kandel Eric R., Schwartz J.H., Jessell Thomas M, Principles of Neural Science 2000: McGraw-Hill/Appleton & LangeGoogle Scholar
  10. 10.
    Dubin, A.E. and A. Patapoutian, Nociceptors: the sensors of the pain pathway. J Clin Invest, 2010. 120(11): p. 3760–72.CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Caterina, M.J., et al., Impaired nociception and pain sensation in mice lacking the capsaicin receptor. Science, 2000. 288(5464): p. 306–13.CrossRefPubMedGoogle Scholar
  12. 12.
    Davis, J.B., et al., Vanilloid receptor-1 is essential for inflammatory thermal hyperalgesia. Nature, 2000. 405(6783): p. 183–7.CrossRefPubMedGoogle Scholar
  13. 13.
    Tender, G.C., et al., Selective ablation of nociceptive neurons for elimination of hyperalgesia and neurogenic inflammation. J Neurosurg, 2005. 102(3): p. 522–5.CrossRefPubMedGoogle Scholar
  14. 14.
    Alves TC, A G., Carvalho ES., Pharmacological treat-ment of trigeminal neuralgia: systematic review and metanalysis. Rev Bras Anestesiol., 2004. 54: p. 836–849.CrossRefPubMedGoogle Scholar
  15. 15.
    Brandt, M.R., C.E. Beyer, and S.M. Stahl, TRPV1 Antagonists and Chronic Pain: Beyond Thermal Perception. Pharmaceuticals (Basel), 2012. 5(2): p. 114–32.CrossRefGoogle Scholar
  16. 16.
    Docherty, R.J., J.C. Yeats, and A.S. Piper, Capsazepine block of voltage-activated calcium channels in adult rat dorsal root ganglion neurones in culture. Br J Pharmacol, 1997. 121(7): p. 1461–7.CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Liu, L. and S.A. Simon, Capsazepine, a vanilloid receptor antagonist, inhibits nicotinic acetylcholine receptors in rat trigeminal ganglia. Neurosci Lett, 1997. 228(1): p. 29–32.CrossRefPubMedGoogle Scholar
  18. 18.
    Moore, J.P., et al., Dissociation of gp120 from HIV-1 virions induced by soluble CD4. Science, 1990. 250(4984): p. 1139–42.CrossRefPubMedGoogle Scholar
  19. 19.
    Hori, T., Capsaicin and central control of thermoregulation. Pharmacol Ther, 1984. 26(3): p. 389–416.CrossRefPubMedGoogle Scholar
  20. 20.
    Premkumar, L.S. and P. Sikand, TRPV1: a target for next generation analgesics. Curr Neuropharmacol, 2008. 6(2): p. 151–63.CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Steiner, A.A., et al., Nonthermal activation of transient receptor potential vanilloid-1 channels in abdominal viscera tonically inhibits autonomic cold-defense effectors. J Neurosci, 2007. 27(28): p. 7459–68.CrossRefPubMedGoogle Scholar
  22. 22.
    Leung, A., et al., rTMS for suppressing neuropathic pain: a meta-analysis. J Pain, 2009. 10(12): p. 1205–16.CrossRefPubMedGoogle Scholar
  23. 23.
    Dosenovic, S., et al., Interventions for Neuropathic Pain: An Overview of Systematic Reviews. Anesth Analg, 2017. 125(2): p. 643–652.CrossRefPubMedGoogle Scholar
  24. 24.
    Antyborzec, I., et al., Low-Affinity Neurotrophin Receptor p75 Promotes the Transduction of Targeted Lentiviral Vectors to Cholinergic Neurons of Rat Basal Forebrain. Neurotherapeutics, 2016. 13(4): p. 859–870.CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Eckert, S.P., A. Taddese, and E.W. McCleskey, Isolation and culture of rat sensory neurons having distinct sensory modalities. J Neurosci Methods, 1997. 77(2): p. 183–90.CrossRefPubMedGoogle Scholar
  26. 26.
    Meng, J., et al., Synaptobrevin I mediates exocytosis of CGRP from sensory neurons and inhibition by botulinum toxins reflects their anti-nociceptive potential. J Cell Sci, 2007. 120(Pt 16): p. 2864–74.CrossRefPubMedGoogle Scholar
  27. 27.
    Meng, J., et al., Activation of TRPV1 mediates calcitonin gene-related peptide release, which excites trigeminal sensory neurons and is attenuated by a retargeted botulinum toxin with anti-nociceptive potential. J Neurosci, 2009. 29(15): p. 4981–92.CrossRefPubMedGoogle Scholar
  28. 28.
    Boussif, O., et al., A versatile vector for gene and oligonucleotide transfer into cells in culture and in vivo: polyethylenimine. Proc Natl Acad Sci U S A, 1995. 92(16): p. 7297–301.CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Evans, M.S., et al., Sumatriptan inhibits TRPV1 channels in trigeminal neurons. Headache, 2012. 52(5): p. 773–84.CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Ovsepian, S.V., et al., A defined heteromeric KV1 channel stabilizes the intrinsic pacemaking and regulates the output of deep cerebellar nuclear neurons to thalamic targets. J Physiol, 2013. 591(7): p. 1771–91.CrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    Wehrman, T., et al., Structural and mechanistic insights into nerve growth factor interactions with the TrkA and p75 receptors. Neuron, 2007. 53(1): p. 25–38.CrossRefPubMedGoogle Scholar
  32. 32.
    Bilderback, T.R., V.R. Gazula, and R.T. Dobrowsky, Phosphoinositide 3-kinase regulates crosstalk between Trk A tyrosine kinase and p75(NTR)-dependent sphingolipid signaling pathways. J Neurochem, 2001. 76(5): p. 1540–51.CrossRefPubMedGoogle Scholar
  33. 33.
    Yeiser, E.C., et al., Neurotrophin signaling through the p75 receptor is deficient in traf6-/- mice. J Neurosci, 2004. 24(46): p. 10521–9.CrossRefPubMedGoogle Scholar
  34. 34.
    Toth, D.M., et al., Nociception, neurogenic inflammation and thermoregulation in TRPV1 knockdown transgenic mice. Cell Mol Life Sci, 2011. 68(15): p. 2589–601.CrossRefPubMedGoogle Scholar
  35. 35.
    Bronfman, F.C., et al., Ligand-induced internalization of the p75 neurotrophin receptor: a slow route to the signaling endosome. J Neurosci, 2003. 23(8): p. 3209–20.CrossRefPubMedGoogle Scholar
  36. 36.
    Ovsepian, S.V., et al., Neurotrophin receptor p75 mediates the uptake of the amyloid beta (Abeta) peptide, guiding it to lysosomes for degradation in basal forebrain cholinergic neurons. Brain Struct Funct, 2014. 219(5): p. 1527–41.CrossRefPubMedGoogle Scholar
  37. 37.
    O'Leary, V.B., et al., Innocuous full-length botulinum neurotoxin targets and promotes the expression of lentiviral vectors in central and autonomic neurons. Gene Ther, 2011. 18(7): p. 656–65.CrossRefPubMedGoogle Scholar
  38. 38.
    Jones, T., C. Fleming, and J. Llewelyn, Management of vascular lesions of the mouth and lips using a potassium titanyl phosphate (KTP) laser: review of patient satisfaction. Br J Oral Maxillofac Surg, 2011. 49(5): p. 364–7.CrossRefPubMedGoogle Scholar
  39. 39.
    Dieleman, J.P., et al., Incidence rates and treatment of neuropathic pain conditions in the general population. Pain, 2008. 137(3): p. 681–8.CrossRefPubMedGoogle Scholar
  40. 40.
    Koopman, J.S., D.H. Vrinten, and A.J. van Wijck, Efficacy of microcurrent therapy in the treatment of chronic nonspecific back pain: a pilot study. Clin J Pain, 2009. 25(6): p. 495–9.CrossRefPubMedGoogle Scholar
  41. 41.
    Wiffen, P.J., et al., Carbamazepine for acute and chronic pain in adults. Cochrane Database Syst Rev, 2011(1): p. CD005451.Google Scholar
  42. 42.
    Bennetto, L., N.K. Patel, and G. Fuller, Trigeminal neuralgia and its management. BMJ, 2007. 334(7586): p. 201–5.CrossRefPubMedPubMedCentralGoogle Scholar
  43. 43.
    Gronseth, G., et al., Practice parameter: the diagnostic evaluation and treatment of trigeminal neuralgia (an evidence-based review): report of the Quality Standards Subcommittee of the American Academy of Neurology and the European Federation of Neurological Societies. Neurology, 2008. 71(15): p. 1183–90.CrossRefPubMedGoogle Scholar
  44. 44.
    Pellock, J.M., Carbamazepine side effects in children and adults. Epilepsia, 1987. 28 Suppl 3: p. S64–70.CrossRefPubMedGoogle Scholar
  45. 45.
    Hebert, A.A. and J.P. Ralston, Cutaneous reactions to anticonvulsant medications. J Clin Psychiatry, 2001. 62 Suppl 14: p. 22–6.PubMedGoogle Scholar
  46. 46.
    Guedon, J.M., et al., Current gene therapy using viral vectors for chronic pain. Mol Pain, 2015. 11: p. 27.CrossRefPubMedPubMedCentralGoogle Scholar
  47. 47.
    Colloca, L., et al., Neuropathic pain. Nat Rev Dis Primers, 2017. 3: p. 17002.CrossRefPubMedPubMedCentralGoogle Scholar
  48. 48.
    Brauer, K., et al., Two distinct populations of cholinergic neurons in the septum of raccoon (Procyon lotor): evidence for a separate subset in the lateral septum. J Comp Neurol, 1999. 412(1): p. 112–22.CrossRefPubMedGoogle Scholar
  49. 49.
    Dunbar, C.E., et al., Gene therapy comes of age. Science 2018; 359(6372).
  50. 50.
    Thomas, C.E., A. Ehrhardt, and M.A. Kay, Progress and problems with the use of viral vectors for gene therapy. Nat Rev Genet, 2003. 4(5): p. 346–58.CrossRefPubMedGoogle Scholar
  51. 51.
    Ghadge, G.D., et al., CNS gene delivery by retrograde transport of recombinant replication-defective adenoviruses. Gene Ther, 1995. 2(2): p. 132–7.PubMedGoogle Scholar
  52. 52.
    O'Leary, V.B., et al., Improved lentiviral transduction of ALS motoneurons in vivo via dual targeting. Mol Pharm, 2013. 10(11): p. 4195–206.CrossRefPubMedGoogle Scholar
  53. 53.
    Ovsepian, S.V., V.B. O'Leary, and L. Zaborszky, Cholinergic Mechanisms in the Cerebral Cortex: Beyond Synaptic Transmission. Neuroscientist, 2016. 22(3): p. 238–51.CrossRefPubMedGoogle Scholar
  54. 54.
    Ovsepian S.V., O'Leary V.B., Ntziachristos V., Dolly J.O., Circumventing Brain Barriers: Nanovehicles for Retroaxonal Therapeutic Delivery. Trends Mol Med 2016;22:983–993.Google Scholar
  55. 55.
    Lafon, M., Rabies virus receptors. J Neurovirol, 2005. 11(1): p. 82–7.CrossRefPubMedGoogle Scholar
  56. 56.
    Lalli, G. and G. Schiavo, Analysis of retrograde transport in motor neurons reveals common endocytic carriers for tetanus toxin and neurotrophin receptor p75NTR. J Cell Biol, 2002. 156(2): p. 233–9.CrossRefPubMedPubMedCentralGoogle Scholar
  57. 57.
    Dechant, G. and Y.A. Barde, The neurotrophin receptor p75(NTR): novel functions and implications for diseases of the nervous system. Nat Neurosci, 2002. 5(11): p. 1131–6.CrossRefPubMedGoogle Scholar
  58. 58.
    Chandler, C.E., et al., A monoclonal antibody modulates the interaction of nerve growth factor with PC12 cells. J Biol Chem, 1984. 259(11): p. 6882–9.PubMedGoogle Scholar
  59. 59.
    Taniuchi, M. and E.M. Johnson, Jr., Characterization of the binding properties and retrograde axonal transport of a monoclonal antibody directed against the rat nerve growth factor receptor. J Cell Biol, 1985. 101(3): p. 1100–6.CrossRefPubMedGoogle Scholar
  60. 60.
    Alreja, M., et al., Muscarinic tone sustains impulse flow in the septohippocampal GABA but not cholinergic pathway: implications for learning and memory. J Neurosci, 2000. 20(21): p. 8103–10.CrossRefPubMedGoogle Scholar
  61. 61.
    Hartig, W., et al., In vivo labeling of rabbit cholinergic basal forebrain neurons with fluorochromated antibodies. Neuroreport, 2002. 13(11): p. 1395–8.CrossRefPubMedGoogle Scholar
  62. 62.
    Kacza, J., et al., Laser scanning and electron microscopic evidence for rapid and specific in vivo labelling of cholinergic neurons in the rat basal forebrain with fluorochromated antibodies. Brain Res, 2000. 867(1–2): p. 232–8.Google Scholar
  63. 63.
    Ovsepian, S.V., J.O. Dolly, and L. Zaborszky, Intrinsic voltage dynamics govern the diversity of spontaneous firing profiles in basal forebrain noncholinergic neurons. J Neurophysiol, 2012. 108(2): p. 406–18.CrossRefPubMedPubMedCentralGoogle Scholar
  64. 64.
    Livnah, O., et al., Three-dimensional structures of avidin and the avidin-biotin complex. Proc Natl Acad Sci U S A, 1993. 90(11): p. 5076–80.CrossRefPubMedPubMedCentralGoogle Scholar
  65. 65.
    Lesch, H.P., et al., Avidin-biotin technology in targeted therapy. Expert Opin Drug Deliv, 2010. 7(5): p. 551–64.CrossRefPubMedGoogle Scholar
  66. 66.
    Weber, P.C., et al., Structural origins of high-affinity biotin binding to streptavidin. Science, 1989. 243(4887): p. 85–8.CrossRefPubMedGoogle Scholar
  67. 67.
    Kaikkonen, M.U., et al., (Strept)avidin-displaying lentiviruses as versatile tools for targeting and dual imaging of gene delivery. Gene Ther, 2009. 16(7): p. 894–904.CrossRefPubMedGoogle Scholar
  68. 68.
    Morizono, K., et al., A versatile targeting system with lentiviral vectors bearing the biotin-adaptor peptide. J Gene Med, 2009. 11(8): p. 655–63.CrossRefPubMedPubMedCentralGoogle Scholar
  69. 69.
    Baliki, M.N. and A.V. Apkarian, Nociception, Pain, Negative Moods, and Behavior Selection. Neuron, 2015. 87(3): p. 474–91.CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© The American Society for Experimental NeuroTherapeutics, Inc. 2018

Authors and Affiliations

  • Valerie B. O’Leary
    • 1
  • Marie O’Connell
    • 1
  • Inga Antyborzec
    • 1
  • Vasilis Ntziachristos
    • 2
    • 3
  • J. Oliver Dolly
    • 1
  • Saak V. Ovsepian
    • 1
    • 2
    • 3
  1. 1.International Centre for NeurotherapeuticsDublin City UniversityDublin 9Ireland
  2. 2.Helmholtz Zentrum München - German Research Center for Environmental HealthInstitute for Biological and Medical ImagingNeuherbergGermany
  3. 3.Faculty for Electrical Engineering and Information Technology, Chair of Biomedical ImagingTechnical University of MunichMunichGermany

Personalised recommendations