Neurotherapeutics

, Volume 14, Issue 3, pp 750–761 | Cite as

Clozapine as a Model for Antipsychotic Development

  • Frederick C. NuciforaJr
  • Marina Mihaljevic
  • Brian J. Lee
  • Akira Sawa
Review

Abstract

Schizophrenia is a devastating illness that affects up to 1% of the population; it is characterized by a combination of positive symptoms, negative symptoms, and cognitive impairment. Currently, treatment consists of one class of medications known as antipsychotics, which include typical (first-generation) and atypical (second-generation) agents. Unfortunately, antipsychotic medications have limited efficacy, with up to a third of patients lacking a full response. Clozapine, the first atypical antipsychotic developed, is the only medication shown to be superior to all other antipsychotics. However, owing to several life-threatening side effects and required enrollment in a registry with routine blood monitoring, clozapine is greatly underutilized in the US. Developing a medication as efficacious as clozapine with limited side effects would likely become the first-line therapy for schizophrenia and related disorders. In this review, we discuss the history of clozapine, landmark studies, and its clinical advantages and disadvantages. We further discuss the hypotheses for clozapine’s superior efficacy based on neuroreceptor binding, and the limitations of a receptor-based approach to antipsychotic development. We highlight some of the advances from pharmacogenetic studies on clozapine and then focus on studies of clozapine using unbiased approaches such as pharmacogenomics and gene expression profiling. Finally, we examine how these approaches could provide insights into clozapine’s mechanism of action and side-effect profile, and lead to novel and improved therapeutics.

Key Words

Clozapine Schizophrenia Antipsychotic Treatment refractory Pharmacogenomics Gene expression profiling 

Notes

Acknowledgments

This work was supported by the National Institute of Mental Health MH-094268 Silvio O. Conte center, MH-092443, MH-105660 (AS); National Institute on Drug Abuse DA-040127 (AS); foundation grants from Stanley, S-R, RUSK, NARSAD, Maryland Stem Cell Research Fund (AS). We would also like to thank Yukiko Lema for help with this manuscript.

Required Author Forms Disclosure forms provided by the authors are available with the online version of this article.

Supplementary material

13311_2017_552_MOESM1_ESM.docx (12 kb)
ESM 1 (DOCX 11 kb)

References

  1. 1.
    Perala J, Suvisaari J, Saarni SI, et al. Lifetime prevalence of psychotic and bipolar I disorders in a general population. Arch Gen Psychiatry 2007;64(1):19-28.PubMedCrossRefGoogle Scholar
  2. 2.
    Saha S, Chant D, Welham J, McGrath J. A systematic review of the prevalence of schizophrenia. PLOS Med 2005;2(5):e141.PubMedPubMedCentralCrossRefGoogle Scholar
  3. 3.
    Owen MJ, Sawa A, Mortensen PB. Schizophrenia. Lancet 2016;388(10039):86-97.PubMedPubMedCentralCrossRefGoogle Scholar
  4. 4.
    Schulz SC, Murray A. Assessing cognitive impairment in patients with schizophrenia. J Clin Psychiatry. 2016;77(Suppl. 2):3-7.PubMedCrossRefGoogle Scholar
  5. 5.
    Palmer BA, Pankratz VS, Bostwick JM. The lifetime risk of suicide in schizophrenia: a reexamination. Arch Gen Psychiatry 2005;62(3):247-253.PubMedCrossRefGoogle Scholar
  6. 6.
    Hor K, Taylor M. Suicide and schizophrenia: a systematic review of rates and risk factors. J Psychopharmacol 2010;24(4 Suppl.):81-90.PubMedPubMedCentralCrossRefGoogle Scholar
  7. 7.
    Brown S, Kim M, Mitchell C, Inskip H. Twenty-five year mortality of a community cohort with schizophrenia. Br J Psychiatry 2010;196(2):116-121.PubMedPubMedCentralCrossRefGoogle Scholar
  8. 8.
    Crump C, Winkleby MA, Sundquist K, Sundquist J. Comorbidities and mortality in persons with schizophrenia: a Swedish national cohort study. Am J Psychiatry 2013;170(3):324-333.PubMedCrossRefGoogle Scholar
  9. 9.
    Cloutier M, Aigbogun MS, Guerin A, et al. The economic burden of schizophrenia in the United States in 2013. J Clin Psychiatry 2016;77(6):764-771.PubMedCrossRefGoogle Scholar
  10. 10.
    Conley RR, Kelly DL. Management of treatment resistance in schizophrenia. Biol Psychiatry 2001;50(11):898-911.PubMedCrossRefGoogle Scholar
  11. 11.
    Miyamoto S, Jarskog LF, Fleischhacker WW. New therapeutic approaches for treatment-resistant schizophrenia: a look to the future. J Psychiatr Res 2014;58:1-6.PubMedCrossRefGoogle Scholar
  12. 12.
    Meltzer HY. Treatment of the neuroleptic-nonresponsive schizophrenic patient. Schizophr Bull 1992;18(3):515-542.PubMedCrossRefGoogle Scholar
  13. 13.
    Shen WW. A history of antipsychotic drug development. Compr Psychiatry 1999;40(6):407-414.PubMedCrossRefGoogle Scholar
  14. 14.
    Preskorn SH. CNS drug development. Part I: the early period of CNS drugs. J Psychiatr Pract 2010;16(5):334-339.PubMedCrossRefGoogle Scholar
  15. 15.
    Crilly J. The history of clozapine and its emergence in the US market: a review and analysis. Hist Psychiatry 2007;18(1):39-60.PubMedCrossRefGoogle Scholar
  16. 16.
    Tamminga CA. Treatment mechanisms: traditional and new antipsychotic drugs. Dialogues Clin Neurosci 2000;2(3):281-286.PubMedPubMedCentralGoogle Scholar
  17. 17.
    Baldessarini RJ, Frankenburg FR. Clozapine. A novel antipsychotic agent. N Engl J Med 1991;324(11):746-754.PubMedCrossRefGoogle Scholar
  18. 18.
    Lindstrom LH. The effect of long-term treatment with clozapine in schizophrenia: a retrospective study in 96 patients treated with clozapine for up to 13 years. Acta Psychiatr Scand 1988;77(5):524-529.PubMedCrossRefGoogle Scholar
  19. 19.
    Kane J, Honigfeld G, Singer J, Meltzer H. Clozapine for the treatment-resistant schizophrenic. A double-blind comparison with chlorpromazine. Arch Gen Psychiatry 1988;45(9):789-796.PubMedCrossRefGoogle Scholar
  20. 20.
    McEvoy JP, Lieberman JA, Stroup TS, et al. Effectiveness of clozapine versus olanzapine, quetiapine, and risperidone in patients with chronic schizophrenia who did not respond to prior atypical antipsychotic treatment. Am J Psychiatry 2006;163(4):600-610.PubMedCrossRefGoogle Scholar
  21. 21.
    Lewis SW, Barnes TR, Davies L, et al. Randomized controlled trial of effect of prescription of clozapine versus other second-generation antipsychotic drugs in resistant schizophrenia. Schizophr Bull 2006;32(4):715-723.PubMedPubMedCentralCrossRefGoogle Scholar
  22. 22.
    Siskind D, McCartney L, Goldschlager R, Kisely S. Clozapine v. first- and second-generation antipsychotics in treatment-refractory schizophrenia: systematic review and meta-analysis. Br J Psychiatry 2016;209(5):385-392.PubMedCrossRefGoogle Scholar
  23. 23.
    Leucht S, Cipriani A, Spineli L, et al. Comparative efficacy and tolerability of 15 antipsychotic drugs in schizophrenia: a multiple-treatments meta-analysis. Lancet 2013;382(9896):951-962.PubMedCrossRefGoogle Scholar
  24. 24.
    Meltzer HY, Alphs L, Green AI, et al. Clozapine treatment for suicidality in schizophrenia: International Suicide Prevention Trial (InterSePT). Arch Gen Psychiatry 2003;60(1):82-91.PubMedCrossRefGoogle Scholar
  25. 25.
    Glazer WM, Dickson RA. Clozapine reduces violence and persistent aggression in schizophrenia. J Clin Psychiatry. 1998;59(Suppl. 3):8-14.PubMedGoogle Scholar
  26. 26.
    Atkin K, Kendall F, Gould D, Freeman H, Liberman J, O'Sullivan D. Neutropenia and agranulocytosis in patients receiving clozapine in the UK and Ireland. Br J Psychiatry 1996;169(4):483-488.PubMedCrossRefGoogle Scholar
  27. 27.
    Honigfeld G, Arellano F, Sethi J, Bianchini A, Schein J. Reducing clozapine-related morbidity and mortality: 5 years of experience with the Clozaril National Registry. J Clin Psychiatry 1998;59(Suppl. 3):3-7.PubMedGoogle Scholar
  28. 28.
    Merrill DB, Ahmari SE, Bradford JM, Lieberman JA. Myocarditis during clozapine treatment. Am J Psychiatry 2006;163(2):204-208.PubMedCrossRefGoogle Scholar
  29. 29.
    Paciullo CA. Evaluating the association between clozapine and venous thromboembolism. Am J Health Syst Pharm 2008;65(19):1825-1829.PubMedCrossRefGoogle Scholar
  30. 30.
    Devinsky O, Honigfeld G, Patin J. Clozapine-related seizures. Neurology 1991;41(3):369-371.PubMedCrossRefGoogle Scholar
  31. 31.
    Varma S, Bishara D, Besag FM, Taylor D. Clozapine-related EEG changes and seizures: dose and plasma-level relationships. Ther Adv Psychopharmacol 2011;1(2):47-66.PubMedPubMedCentralCrossRefGoogle Scholar
  32. 32.
    Palmer SE, McLean RM, Ellis PM, Harrison-Woolrych M. Life-threatening clozapine-induced gastrointestinal hypomotility: an analysis of 102 cases. J Clin Psychiatry 2008;69(5):759-768.PubMedCrossRefGoogle Scholar
  33. 33.
    Henderson DC, Nguyen DD, Copeland PM, et al. Clozapine, diabetes mellitus, hyperlipidemia, and cardiovascular risks and mortality: results of a 10-year naturalistic study. J Clin Psychiatry 2005;66(9):1116-1121.PubMedCrossRefGoogle Scholar
  34. 34.
    Meltzer HY. Clozapine: balancing safety with superior antipsychotic efficacy. Clin Schizophr Relat Psychoses 2012;6(3):134-144.PubMedCrossRefGoogle Scholar
  35. 35.
    Howes OD, Vergunst F, Gee S, McGuire P, Kapur S, Taylor D. Adherence to treatment guidelines in clinical practice: study of antipsychotic treatment prior to clozapine initiation. Br J Psychiatry 2012;201(6):481-485.PubMedCrossRefGoogle Scholar
  36. 36.
    Edwards J, Maude D, McGorry PD, Harrigan SM, Cocks JT. Prolonged recovery in first-episode psychosis. Br J Psychiatry Suppl 1998;172(33):107-116.PubMedGoogle Scholar
  37. 37.
    Su TP, Malhotra AK, Hadd K, Breier A, Pickar D. D2 dopamine receptor occupancy: a crossover comparison of risperidone with clozapine therapy in schizophrenic patients. Arch Gen Psychiatry 1997;54(10):972-973.PubMedCrossRefGoogle Scholar
  38. 38.
    Miyamoto S, Duncan GE, Marx CE, Lieberman JA. Treatments for schizophrenia: a critical review of pharmacology and mechanisms of action of antipsychotic drugs. Mol Psychiatry 2005;10(1):79-104.PubMedCrossRefGoogle Scholar
  39. 39.
    Kusumi I, Boku S, Takahashi Y. Psychopharmacology of atypical antipsychotic drugs: From the receptor binding profile to neuroprotection and neurogenesis. Psychiatry Clin Neurosci 2015;69(5):243-258.PubMedCrossRefGoogle Scholar
  40. 40.
    Corena-McLeod M. Comparative pharmacology of risperidone and paliperidone. Drugs R D 2015;15(2):163-174.PubMedPubMedCentralCrossRefGoogle Scholar
  41. 41.
    Richelson E. New antipsychotic drugs: how do their receptor-binding profiles compare? J Clin Psychiatry 2010;71(9):1243-1244.PubMedCrossRefGoogle Scholar
  42. 42.
    Shahid M, Walker GB, Zorn SH, Wong EH. Asenapine: a novel psychopharmacologic agent with a unique human receptor signature. J Psychopharmacol 2009;23(1):65-73.PubMedCrossRefGoogle Scholar
  43. 43.
    Ishibashi T, Horisawa T, Tokuda K, et al. Pharmacological profile of lurasidone, a novel antipsychotic agent with potent 5-hydroxytryptamine 7 (5-HT7) and 5-HT1A receptor activity. J Pharmacol Exp Ther 2010;334(1):171-181.PubMedCrossRefGoogle Scholar
  44. 44.
    Albers LJ, Musenga A, Raggi MA. Iloperidone: a new benzisoxazole atypical antipsychotic drug. Is it novel enough to impact the crowded atypical antipsychotic market? Expert Opin Investig Drugs 2008;17(1):61-75.PubMedCrossRefGoogle Scholar
  45. 45.
    Howes OD, Egerton A, Allan V, McGuire P, Stokes P, Kapur S. Mechanisms underlying psychosis and antipsychotic treatment response in schizophrenia: insights from PET and SPECT imaging. Curr Pharm Des 2009;15(22):2550-2559.PubMedPubMedCentralCrossRefGoogle Scholar
  46. 46.
    Kapur S, Zipursky RB, Remington G. Clinical and theoretical implications of 5-HT2 and D2 receptor occupancy of clozapine, risperidone, and olanzapine in schizophrenia. Am J Psychiatry 1999;156(2):286-293.PubMedGoogle Scholar
  47. 47.
    Pani L, Pira L, Marchese G. Antipsychotic efficacy: relationship to optimal D2-receptor occupancy. Eur Psychiatry 2007;22(5):267-275.PubMedCrossRefGoogle Scholar
  48. 48.
    Meltzer HY. The mechanism of action of novel antipsychotic drugs. Schizophr Bull 1991;17(2):263-287.PubMedCrossRefGoogle Scholar
  49. 49.
    Kapur S, Seeman P. Does fast dissociation from the dopamine d(2) receptor explain the action of atypical antipsychotics?: A new hypothesis. Am J Psychiatry 2001;158(3):360-369.PubMedCrossRefGoogle Scholar
  50. 50.
    Seeman P. Atypical antipsychotics: mechanism of action. Can J Psychiatry 2002;47(1):27-38.PubMedGoogle Scholar
  51. 51.
    Meltzer HY, Matsubara S, Lee JC. The ratios of serotonin2 and dopamine2 affinities differentiate atypical and typical antipsychotic drugs. Psychopharmacol Bull 1989;25(3):390-392.PubMedGoogle Scholar
  52. 52.
    Ebdrup BH, Rasmussen H, Arnt J, Glenthoj B. Serotonin 2A receptor antagonists for treatment of schizophrenia. Expert Opin Investig Drugs 2011;20(9):1211-1223.PubMedCrossRefGoogle Scholar
  53. 53.
    Kulkarni SK, Ninan I. Dopamine D4 receptors and development of newer antipsychotic drugs. Fundam Clin Pharmacol 2000;14(6):529-539.PubMedCrossRefGoogle Scholar
  54. 54.
    Tarazi FI, Zhang K, Baldessarini RJ. Dopamine D4 receptors: beyond schizophrenia. J Recept Signal Transduct Res 2004;24(3):131-147.PubMedCrossRefGoogle Scholar
  55. 55.
    Svensson TH. Alpha-adrenoceptor modulation hypothesis of antipsychotic atypicality. Prog Neuropsychopharmacol Biol Psychiatry 2003;27(7):1145-1158.PubMedCrossRefGoogle Scholar
  56. 56.
    Hommer DW, Zahn TP, Pickar D, van Kammen DP. Prazosin, a specific alpha 1-noradrenergic receptor antagonist, has no effect on symptoms but increases autonomic arousal in schizophrenic patients. Psychiatry Res 1984;11(3):193-204.PubMedCrossRefGoogle Scholar
  57. 57.
    Friedman JI, Adler DN, Temporini HD, et al. Guanfacine treatment of cognitive impairment in schizophrenia. Neuropsychopharmacology 2001;25(3):402-409.PubMedCrossRefGoogle Scholar
  58. 58.
    Rajji TK, Mulsant BH, Davies S, et al. Prediction of working memory performance in schizophrenia by plasma ratio of clozapine to N-desmethylclozapine. Am J Psychiatry 2015;172(6):579-585.PubMedCrossRefGoogle Scholar
  59. 59.
    Foster DJ, Choi DL, Conn PJ, Rook JM. Activation of M1 and M4 muscarinic receptors as potential treatments for Alzheimer's disease and schizophrenia. Neuropsychiatr Dis Treat 2014;10:183-191.PubMedPubMedCentralGoogle Scholar
  60. 60.
    Shekhar A, Potter WZ, Lightfoot J, et al. Selective muscarinic receptor agonist xanomeline as a novel treatment approach for schizophrenia. Am J Psychiatry 2008;165(8):1033-1039.PubMedCrossRefGoogle Scholar
  61. 61.
    Humbert-Claude M, Davenas E, Gbahou F, Vincent L, Arrang JM. Involvement of histamine receptors in the atypical antipsychotic profile of clozapine: a reassessment in vitro and in vivo. Psychopharmacology (Berl) 2012;220(1):225-241.CrossRefGoogle Scholar
  62. 62.
    Meskanen K, Ekelund H, Laitinen J, et al. A randomized clinical trial of histamine 2 receptor antagonism in treatment-resistant schizophrenia. J Clin Psychopharmacol 2013;33(4):472-478.PubMedCrossRefGoogle Scholar
  63. 63.
    Kroeze WK, Hufeisen SJ, Popadak BA, et al. H1-histamine receptor affinity predicts short-term weight gain for typical and atypical antipsychotic drugs. Neuropsychopharmacology 2003;28(3):519-526.PubMedCrossRefGoogle Scholar
  64. 64.
    Bozymski KM, Lowe DK, Pasternak KM, Gatesman TL, Crouse EL. Pimavanserin: a novel antipsychotic for parkinson's disease psychosis. Ann Pharmacother 2017;51(6):479-487.PubMedCrossRefGoogle Scholar
  65. 65.
    Meltzer HY, Mills R, Revell S, et al. Pimavanserin, a serotonin(2A) receptor inverse agonist, for the treatment of parkinson's disease psychosis. Neuropsychopharmacology 2010;35(4):881-892.PubMedCrossRefGoogle Scholar
  66. 66.
    Meltzer HY, Elkis H, Vanover K, et al. Pimavanserin, a selective serotonin (5-HT)2A-inverse agonist, enhances the efficacy and safety of risperidone, 2mg/day, but does not enhance efficacy of haloperidol, 2mg/day: comparison with reference dose risperidone, 6mg/day. Schizophr Res 2012;141(2-3):144-152.PubMedCrossRefGoogle Scholar
  67. 67.
    Gressier F, Porcelli S, Calati R, Serretti A. Pharmacogenetics of clozapine response and induced weight gain: a comprehensive review and meta-analysis. Eur Neuropsychopharmacol 2016;26(2):163-185.PubMedCrossRefGoogle Scholar
  68. 68.
    Lally J, Gaughran F, Timms P, Curran SR. Treatment-resistant schizophrenia: current insights on the pharmacogenomics of antipsychotics. Pharmgenomics Pers Med 2016;9:117-129.PubMedPubMedCentralGoogle Scholar
  69. 69.
    Krivoy A, Gaughran F, Weizman A, Breen G, MacCabe JH. Gene polymorphisms potentially related to the pharmacokinetics of clozapine: a systematic review. Int Clin Psychopharmacol 2016;31(4):179-184.PubMedCrossRefGoogle Scholar
  70. 70.
    Sriretnakumar V, Huang E, Muller DJ. Pharmacogenetics of clozapine treatment response and side-effects in schizophrenia: an update. Expert Opin Drug Metab Toxicol 2015;11(11):1709-1731.PubMedCrossRefGoogle Scholar
  71. 71.
    Lin CH, Tsai SJ, Yu YW, et al. No evidence for association of serotonin-2A receptor variant (102T/C) with schizophrenia or clozapine response in a Chinese population. Neuroreport 1999;10(1):57-60.PubMedCrossRefGoogle Scholar
  72. 72.
    Lee ST, Ryu S, Kim SR, et al. Association study of 27 annotated genes for clozapine pharmacogenetics: validation of preexisting studies and identification of a new candidate gene, ABCB1, for treatment response. J Clin Psychopharmacol 2012;32(4):441-448.PubMedCrossRefGoogle Scholar
  73. 73.
    Akamine Y, Sugawara-Kikuchi Y, Uno T, Shimizu T, Miura M. Quantification of the steady-state plasma concentrations of clozapine and N-desmethylclozapine in Japanese patients with schizophrenia using a novel HPLC method and the effects of CYPs and ABC transporters polymorphisms. Ann Clin Biochem 2017:4563216686377.Google Scholar
  74. 74.
    Xu Q, Wu X, Li M, et al. Association studies of genomic variants with treatment response to risperidone, clozapine, quetiapine and chlorpromazine in the Chinese Han population. Pharmacogenomics J 2016;16(4):357-365.PubMedCrossRefGoogle Scholar
  75. 75.
    Arranz MJ, Munro J, Sham P, et al. Meta-analysis of studies on genetic variation in 5-HT2A receptors and clozapine response. Schizophr Res 1998;32(2):93-99.PubMedCrossRefGoogle Scholar
  76. 76.
    Lett TA, Wallace TJ, Chowdhury NI, Tiwari AK, Kennedy JL, Muller DJ. Pharmacogenetics of antipsychotic-induced weight gain: review and clinical implications. Mol Psychiatry 2012;17(3):242-266.PubMedCrossRefGoogle Scholar
  77. 77.
    Zhang JP, Malhotra AK. Pharmacogenetics of antipsychotics: recent progress and methodological issues. Expert Opin Drug Metab Toxicol 2013;9(2):183-191.PubMedCrossRefGoogle Scholar
  78. 78.
    Nothen MM, Rietschel M, Erdmann J, et al. Genetic variation of the 5-HT2A receptor and response to clozapine. Lancet 1995;346(8979):908-909.PubMedCrossRefGoogle Scholar
  79. 79.
    Malhotra AK, Goldman D, Ozaki N, Breier A, Buchanan R, Pickar D. Lack of association between polymorphisms in the 5-HT2A receptor gene and the antipsychotic response to clozapine. Am J Psychiatry 1996;153(8):1092-1094.PubMedCrossRefGoogle Scholar
  80. 80.
    Masellis M, Basile V, Meltzer HY, et al. Serotonin subtype 2 receptor genes and clinical response to clozapine in schizophrenia patients. Neuropsychopharmacology 1998;19(2):123-132.PubMedCrossRefGoogle Scholar
  81. 81.
    Schumacher J, Schulze TG, Wienker TF, Rietschel M, Nothen MM. Pharmacogenetics of the clozapine response. Lancet 2000;356(9228):506-507.PubMedCrossRefGoogle Scholar
  82. 82.
    Brown AS. The environment and susceptibility to schizophrenia. Prog Neurobiol 2011;93(1):23-58.PubMedCrossRefGoogle Scholar
  83. 83.
    McGrath JJ, Mortensen PB, Visscher PM, Wray NR. Where GWAS and epidemiology meet: opportunities for the simultaneous study of genetic and environmental risk factors in schizophrenia. Schizophr Bull 2013;39(5):955-959.PubMedPubMedCentralCrossRefGoogle Scholar
  84. 84.
    Kannan G, Sawa A, Pletnikov MV. Mouse models of gene-environment interactions in schizophrenia. Neurobiol Dis 2013;57:5-11.PubMedPubMedCentralCrossRefGoogle Scholar
  85. 85.
    International Schizophrenia Consortium, Purcell SM, Wray NR, et al. Common polygenic variation contributes to risk of schizophrenia and bipolar disorder. Nature 2009;460(7256):748-752.Google Scholar
  86. 86.
    Wray NR, Goddard ME, Visscher PM. Prediction of individual genetic risk to disease from genome-wide association studies. Genome Res 2007;17(10):1520-1528.PubMedPubMedCentralCrossRefGoogle Scholar
  87. 87.
    Euesden J, Lewis CM, O'Reilly PF. PRSice: Polygenic Risk Score software. Bioinformatics 2015;31(9):1466-1468.PubMedCrossRefGoogle Scholar
  88. 88.
    Levine ME, Crimmins EM, Prescott CA, Phillips D, Arpawong TE, Lee J. A polygenic risk score associated with measures of depressive symptoms among older adults. Biodemography Soc Biol 2014;60(2):199-211.PubMedPubMedCentralCrossRefGoogle Scholar
  89. 89.
    Frank J, Lang M, Witt SH, et al. Identification of increased genetic risk scores for schizophrenia in treatment-resistant patients. Mol Psychiatry 2015;20(2):150-151.PubMedCrossRefGoogle Scholar
  90. 90.
    Ruderfer DM, Charney AW, Readhead B, et al. Polygenic overlap between schizophrenia risk and antipsychotic response: a genomic medicine approach. Lancet Psychiatry 2016;3(4):350-357.PubMedPubMedCentralCrossRefGoogle Scholar
  91. 91.
    Ikeda M, Yoshimura R, Hashimoto R, et al. Genetic overlap between antipsychotic response and susceptibility to schizophrenia. J Clin Psychopharmacol 2015;35(1):85-88.PubMedCrossRefGoogle Scholar
  92. 92.
    Martin AK, Mowry B. Increased rare duplication burden genomewide in patients with treatment-resistant schizophrenia. Psychol Med 2016;46(3):469-476.PubMedCrossRefGoogle Scholar
  93. 93.
    Hamshere ML, Walters JT, Smith R, et al. Genome-wide significant associations in schizophrenia to ITIH3/4, CACNA1C and SDCCAG8, and extensive replication of associations reported by the Schizophrenia PGC. Mol Psychiatry 2013;18(6):708-712.PubMedCrossRefGoogle Scholar
  94. 94.
    Brandl EJ, Lett TA, Chowdhury NI, et al. The role of the ITIH3 rs2535629 variant in antipsychotic response. Schizophr Res 2016;176(2-3):131-135.PubMedCrossRefGoogle Scholar
  95. 95.
    Huang E, Maciukiewicz M, Zai CC, et al. Preliminary evidence for association of genome-wide significant DRD2 schizophrenia risk variant with clozapine response. Pharmacogenomics 2016;17(2):103-109.PubMedCrossRefGoogle Scholar
  96. 96.
    Girgis RR, Javitch JA, Lieberman JA. Antipsychotic drug mechanisms: links between therapeutic effects, metabolic side effects and the insulin signaling pathway. Mol Psychiatry 2008;13(10):918-929.PubMedPubMedCentralCrossRefGoogle Scholar
  97. 97.
    Newcomer JW. Metabolic considerations in the use of antipsychotic medications: a review of recent evidence. J Clin Psychiatry 2007;68(Suppl. 1):20-27.PubMedGoogle Scholar
  98. 98.
    Gunnell D, Holly JM. Do insulin-like growth factors underlie associations of birth complications, fetal and pre-adult growth with schizophrenia? Schizophr Res 2004;67(2-3):309-311.PubMedCrossRefGoogle Scholar
  99. 99.
    Zhao Z, Ksiezak-Reding H, Riggio S, Haroutunian V, Pasinetti GM. Insulin receptor deficits in schizophrenia and in cellular and animal models of insulin receptor dysfunction. Schizophr Res 2006;84(1):1-14.PubMedCrossRefGoogle Scholar
  100. 100.
    Thiselton DL, Vladimirov VI, Kuo PH, et al. AKT1 is associated with schizophrenia across multiple symptom dimensions in the Irish study of high density schizophrenia families. Biol Psychiatry 2008;63(5):449-457.PubMedCrossRefGoogle Scholar
  101. 101.
    Kozlovsky N, Belmaker RH, Agam G. Low GSK-3beta immunoreactivity in postmortem frontal cortex of schizophrenic patients. Am J Psychiatry 2000;157(5):831-833.PubMedCrossRefGoogle Scholar
  102. 102.
    Kozlovsky N, Belmaker RH, Agam G. Low GSK-3 activity in frontal cortex of schizophrenic patients. Schizophr Res 2001;52(1-2):101-105.PubMedCrossRefGoogle Scholar
  103. 103.
    Beasley C, Cotter D, Khan N, et al. Glycogen synthase kinase-3beta immunoreactivity is reduced in the prefrontal cortex in schizophrenia. Neurosci Lett 2001;302(2-3):117-120.PubMedCrossRefGoogle Scholar
  104. 104.
    Goldstein JI, Jarskog LF, Hilliard C, et al. Clozapine-induced agranulocytosis is associated with rare HLA-DQB1 and HLA-B alleles. Nat Commun 2014;5:4757.PubMedPubMedCentralCrossRefGoogle Scholar
  105. 105.
    Legge SE, Hamshere ML, Ripke S, et al. Genome-wide common and rare variant analysis provides novel insights into clozapine-associated neutropenia. Mol Psychiatry 2016 Aug 9 [Epub ahead of print].Google Scholar
  106. 106.
    Thorleifsson G, Walters GB, Gudbjartsson DF, et al. Genome-wide association yields new sequence variants at seven loci that associate with measures of obesity. Nat Genet 2009;41(1):18-24.PubMedCrossRefGoogle Scholar
  107. 107.
    Malhotra AK, Correll CU, Chowdhury NI, et al. Association between common variants near the melanocortin 4 receptor gene and severe antipsychotic drug-induced weight gain. Arch Gen Psychiatry 2012;69(9):904-912.PubMedPubMedCentralCrossRefGoogle Scholar
  108. 108.
    Chowdhury NI, Tiwari AK, Souza RP, et al. Genetic association study between antipsychotic-induced weight gain and the melanocortin-4 receptor gene. Pharmacogenomics J 2013;13(3):272-279.PubMedCrossRefGoogle Scholar
  109. 109.
    Aston C, Jiang L, Sokolov BP. Microarray analysis of postmortem temporal cortex from patients with schizophrenia. J Neurosci Res 2004;77(6):858-866.PubMedCrossRefGoogle Scholar
  110. 110.
    Chen H, Wang N, Zhao X, Ross CA, O'Shea KS, McInnis MG. Gene expression alterations in bipolar disorder postmortem brains. Bipolar Disord 2013;15(2):177-187.PubMedPubMedCentralCrossRefGoogle Scholar
  111. 111.
    Iwamoto K, Bundo M, Kato T. Altered expression of mitochondria-related genes in postmortem brains of patients with bipolar disorder or schizophrenia, as revealed by large-scale DNA microarray analysis. Hum Mol Genet 2005;14(2):241-253.PubMedCrossRefGoogle Scholar
  112. 112.
    Mudge J, Miller NA, Khrebtukova I, et al. Genomic convergence analysis of schizophrenia: mRNA sequencing reveals altered synaptic vesicular transport in post-mortem cerebellum. PLOS ONE 2008;3(11):e3625.PubMedPubMedCentralCrossRefGoogle Scholar
  113. 113.
    Pietersen CY, Mauney SA, Kim SS, et al. Molecular profiles of pyramidal neurons in the superior temporal cortex in schizophrenia. J Neurogenet 2014;28(1-2):53-69.PubMedPubMedCentralCrossRefGoogle Scholar
  114. 114.
    Pietersen CY, Mauney SA, Kim SS, et al. Molecular profiles of parvalbumin-immunoreactive neurons in the superior temporal cortex in schizophrenia. J Neurogenet 2014;28(1-2):70-85.PubMedPubMedCentralCrossRefGoogle Scholar
  115. 115.
    Schmitt A, Leonardi-Essmann F, Durrenberger PF, et al. Regulation of immune-modulatory genes in left superior temporal cortex of schizophrenia patients: a genome-wide microarray study. World J Biol Psychiatry 2011;12(3):201-215.PubMedCrossRefGoogle Scholar
  116. 116.
    Wu JQ, Wang X, Beveridge NJ, et al. Transcriptome sequencing revealed significant alteration of cortical promoter usage and splicing in schizophrenia. PLOS ONE 2012;7(4):e36351.PubMedPubMedCentralCrossRefGoogle Scholar
  117. 117.
    Lee BJ, Marchionni L, Andrews CE, et al. Analysis of differential gene expression mediated by clozapine in human postmortem brains. Schizophr Res 2016 Dec 17 [Epub ahead of print].Google Scholar
  118. 118.
    Steullet P, Cabungcal JH, Monin A, et al. Redox dysregulation, neuroinflammation, and NMDA receptor hypofunction: A "central hub" in schizophrenia pathophysiology? Schizophr Res 2016;176(1):41-51.PubMedCrossRefGoogle Scholar
  119. 119.
    Tosic M, Ott J, Barral S, et al. Schizophrenia and oxidative stress: glutamate cysteine ligase modifier as a susceptibility gene. Am J Hum Genet 2006;79(3):586-592.PubMedPubMedCentralCrossRefGoogle Scholar
  120. 120.
    Law AJ, Wang Y, Sei Y, et al. Neuregulin 1-ErbB4-PI3K signaling in schizophrenia and phosphoinositide 3-kinase-p110delta inhibition as a potential therapeutic strategy. Proc Natl Acad Sci U S A 2012;109(30):12165-12170.PubMedPubMedCentralCrossRefGoogle Scholar
  121. 121.
    Morris BJ, Pratt JA. Novel treatment strategies for schizophrenia from improved understanding of genetic risk. Clin Genet 2014;86(5):401-411.PubMedCrossRefGoogle Scholar
  122. 122.
    Rosse C, Formstecher E, Boeckeler K, et al. An aPKC-exocyst complex controls paxillin phosphorylation and migration through localised JNK1 activation. PLOS Biol 2009;7(11):e1000235.PubMedPubMedCentralCrossRefGoogle Scholar
  123. 123.
    Schubert KO, Focking M, Prehn JH, Cotter DR. Hypothesis review: are clathrin-mediated endocytosis and clathrin-dependent membrane and protein trafficking core pathophysiological processes in schizophrenia and bipolar disorder? Mol Psychiatry 2012;17(7):669-681.PubMedCrossRefGoogle Scholar

Copyright information

© The American Society for Experimental NeuroTherapeutics, Inc. 2017

Authors and Affiliations

  • Frederick C. NuciforaJr
    • 1
  • Marina Mihaljevic
    • 2
  • Brian J. Lee
    • 1
  • Akira Sawa
    • 1
  1. 1.Department of Psychiatry and Behavioral SciencesJohns Hopkins University School of MedicineBaltimoreUSA
  2. 2.Clinic for PsychiatryClinical Center of SerbiaBelgradeSerbia

Personalised recommendations