Neurotherapeutics

, Volume 14, Issue 3, pp 564–581

Genetic Approaches to Understanding Psychiatric Disease

Review

Abstract

Human genetic studies have been the driving force in bringing to light the underlying biology of psychiatric conditions. As these studies fill in the gaps in our knowledge of the mechanisms at play, we will be better equipped to design therapies in rational and targeted ways, or repurpose existing therapies in previously unanticipated ways. This review is intended for those unfamiliar with psychiatric genetics as a field and provides a primer on different modes of genetic variation, the technologies currently used to probe them, and concepts that provide context for interpreting the gene–phenotype relationship. Like other subfields in human genetics, psychiatric genetics is moving from microarray technology to sequencing-based approaches as barriers of cost and expertise are removed, and the ramifications of this transition are discussed here. A summary is then given of recent genetic discoveries in a number of neuropsychiatric conditions, with particular emphasis on neurodevelopmental conditions. The general impact of genetics on drug development has been to underscore the extensive etiological heterogeneity in seemingly cohesive diagnostic categories. Consequently, the path forward is not in therapies hoping to reach large swaths of patients sharing a clinically defined diagnosis, but rather in targeting patients belonging to specific “biotypes” defined through a combination of objective, quantifiable data, including genotype.

Key Words

Psychiatric genetics copy number variant sequencing microarrays GWAS 

Supplementary material

13311_2017_551_MOESM1_ESM.pdf (1.2 mb)
ESM 1(PDF 1224 kb)

References

  1. 1.
    Kurahashi H, Tsutsumi M, Nishiyama S, Kogo H, Inagaki H, Ohye T. Molecular basis of maternal age-related increase in oocyte aneuploidy. Congenit Anom (Kyoto) 2012;52(1):8–15.CrossRefGoogle Scholar
  2. 2.
    Jiang J, Jing Y, Cost GJ, et al. Translating dosage compensation to trisomy 21. Nature 2013;500(7462):296–300.PubMedPubMedCentralCrossRefGoogle Scholar
  3. 3.
    Antonarakis SE. Down syndrome and the complexity of genome dosage imbalance. Nat Rev Genet 2017;18(3):147–163.PubMedCrossRefGoogle Scholar
  4. 4.
    Blackwood DH, Fordyce A, Walker MT, St Clair DM, Porteous DJ, Muir WJ. Schizophrenia and affective disorders—cosegregation with a translocation at chromosome 1q42 that directly disrupts brain-expressed genes: clinical and P300 findings in a family. Am J Hum Genet 2001;69(2):428–433.PubMedPubMedCentralCrossRefGoogle Scholar
  5. 5.
    Alkan C, Coe BP, Eichler EE. Genome structural variation discovery and genotyping. Nat Rev Genet 2011;12(5):363–376.PubMedPubMedCentralCrossRefGoogle Scholar
  6. 6.
    Zhang F, Gu W, Hurles ME, Lupski JR. Copy number variation in human health, disease, and evolution. Annu Rev Genom Hum Genet 2009;10:451–481.CrossRefGoogle Scholar
  7. 7.
    Malhotra D, Sebat J. CNVs: harbingers of a rare variant revolution in psychiatric genetics. Cell 2012;148(6):1223–1241.PubMedPubMedCentralCrossRefGoogle Scholar
  8. 8.
    Iafrate AJ, Feuk L, Rivera MN, et al. Detection of large-scale variation in the human genome. Nat Genet 2004;36(9):949–951.PubMedCrossRefGoogle Scholar
  9. 9.
    Sebat J, Lakshmi B, Troge J, et al. Large-scale copy number polymorphism in the human genome. Science 2004;305(5683):525–528.PubMedCrossRefGoogle Scholar
  10. 10.
    Itsara A, Wu H, Smith JD, et al. De novo rates and selection of large copy number variation. Genome Res 2010;20(11):1469-1481.PubMedPubMedCentralCrossRefGoogle Scholar
  11. 11.
    Marshall CR, Noor A, Vincent JB, et al. Structural variation of chromosomes in autism spectrum disorder. Am J Hum Genet 2008;82(2):477–488.PubMedPubMedCentralCrossRefGoogle Scholar
  12. 12.
    Sebat J, Lakshmi B, Malhotra D, et al. Strong association of de novo copy number mutations with autism. Science 2007;316(5823):445–449.PubMedPubMedCentralCrossRefGoogle Scholar
  13. 13.
    Levy D, Ronemus M, Yamrom B, et al. Rare de novo and transmitted copy-number variation in autistic spectrum disorders. Neuron 2011;70(5):886–897.PubMedCrossRefGoogle Scholar
  14. 14.
    Sanders SJ, Ercan-Sencicek AG, Hus V, et al. Multiple recurrent de novo CNVs, including duplications of the 7q11.23 Williams syndrome region, are strongly associated with autism. Neuron 2011;70(5):863–885.PubMedPubMedCentralCrossRefGoogle Scholar
  15. 15.
    Sebat J, Levy DL, McCarthy SE. Rare structural variants in schizophrenia: one disorder, multiple mutations; one mutation, multiple disorders. Trends Genet 2009;25(12):528–535.PubMedPubMedCentralCrossRefGoogle Scholar
  16. 16.
    Walsh T, McClellan JM, McCarthy SE, et al. Rare structural variants disrupt multiple genes in neurodevelopmental pathways in schizophrenia. Science 2008;320(5875):539–543.PubMedCrossRefGoogle Scholar
  17. 17.
    Raychaudhuri S, Korn JM, McCarroll SA, et al. Accurately assessing the risk of schizophrenia conferred by rare copy-number variation affecting genes with brain function. PLOS Genet 2010;6(9):e1001097.PubMedPubMedCentralCrossRefGoogle Scholar
  18. 18.
    Bailey JA, Eichler EE. Primate segmental duplications: crucibles of evolution, diversity and disease. Nat Rev Genet 2006;7(7):552–564.PubMedCrossRefGoogle Scholar
  19. 19.
    Stankiewicz P, Shaw CJ, Withers M, Inoue K, Lupski JR. Serial segmental duplications during primate evolution result in complex human genome architecture. Genome Res 2004;14(11):2209–2220.PubMedPubMedCentralCrossRefGoogle Scholar
  20. 20.
    Fan H, Chu JY. A brief review of short tandem repeat mutation. Genomics Proteomics Bioinforma 2007;5(1):7-14.CrossRefGoogle Scholar
  21. 21.
    Labbadia J, Morimoto RI. Huntington's disease: underlying molecular mechanisms and emerging concepts. Trends Biochem Sci 2013;38(8):378–385.PubMedPubMedCentralCrossRefGoogle Scholar
  22. 22.
    Jin P, Warren ST. Understanding the molecular basis of fragile X syndrome. Hum Mol Genet 2000;9(6):901–908.PubMedCrossRefGoogle Scholar
  23. 23.
    1000 Genomes Project Consortium, Abecasis GR, Altshuler D, et al. A map of human genome variation from population-scale sequencing. Nature 2010;467(7319):1061–1073.CrossRefGoogle Scholar
  24. 24.
    Teo YY. Common statistical issues in genome-wide association studies: a review on power, data quality control, genotype calling and population structure. Curr Opin Lipidol 2008;19(2):133–143.PubMedCrossRefGoogle Scholar
  25. 25.
    Goodwin S, McPherson JD, McCombie WR. Coming of age: ten years of next-generation sequencing technologies. Nat Rev Genet 2016;17(6):333–351.PubMedCrossRefGoogle Scholar
  26. 26.
    Sanders SJ, Murtha MT, Gupta AR, et al. De novo mutations revealed by whole-exome sequencing are strongly associated with autism. Nature 2012;485(7397):237–241.PubMedPubMedCentralCrossRefGoogle Scholar
  27. 27.
    Iossifov I, Ronemus M, Levy D, et al. De novo gene disruptions in children on the autistic spectrum. Neuron 2012;74(2):285–299.PubMedPubMedCentralCrossRefGoogle Scholar
  28. 28.
    Neale BM, Kou Y, Liu L, et al. Patterns and rates of exonic de novo mutations in autism spectrum disorders. Nature 2012;485(7397):242–245.PubMedPubMedCentralCrossRefGoogle Scholar
  29. 29.
    O'Roak BJ, Vives L, Girirajan S, et al. Sporadic autism exomes reveal a highly interconnected protein network of de novo mutations. Nature 2012;485(7397):246–250.PubMedPubMedCentralCrossRefGoogle Scholar
  30. 30.
    Turner TN, Hormozdiari F, Duyzend MH, et al. Genome sequencing of autism-affected families reveals disruption of putative noncoding regulatory DNA. Am J Hum Genet 2016;98(1):58–74.PubMedCrossRefGoogle Scholar
  31. 31.
    Rhoads A, Au KF. PacBio sequencing and its applications. Genomics Proteomics Bioinforma 2015;13(5):278–289.CrossRefGoogle Scholar
  32. 32.
    Chaisson MJ, Huddleston J, Dennis MY, et al. Resolving the complexity of the human genome using single-molecule sequencing. Nature 2015;517(7536):608–611.PubMedCrossRefGoogle Scholar
  33. 33.
    Zheng GX, Lau BT, Schnall-Levin M, et al. Haplotyping germline and cancer genomes with high-throughput linked-read sequencing. Nat Biotechnol 2016;34(3):303–311.PubMedPubMedCentralCrossRefGoogle Scholar
  34. 34.
    Cantsilieris S, Stessman HA, Shendure J, Eichler EE. Targeted capture and high-throughput sequencing using molecular inversion probes (MIPs). Meth Mol Biol 2017;1492:95–106.CrossRefGoogle Scholar
  35. 35.
    Niedzicka M, Fijarczyk A, Dudek K, Stuglik M, Babik W. Molecular Inversion Probes for targeted resequencing in non-model organisms. Sci Rep 2016;6:24051.PubMedPubMedCentralCrossRefGoogle Scholar
  36. 36.
    Gaugler T, Klei L, Sanders SJ, et al. Most genetic risk for autism resides with common variation. Nat Genet 2014;46(8):881–885.PubMedPubMedCentralCrossRefGoogle Scholar
  37. 37.
    Clarke TK, Lupton MK, Fernandez-Pujals AM, et al. Common polygenic risk for autism spectrum disorder (ASD) is associated with cognitive ability in the general population. Mol Psychiatry 2016;21(3):419–425.PubMedCrossRefGoogle Scholar
  38. 38.
    Power RA, Steinberg S, Bjornsdottir G, et al. Polygenic risk scores for schizophrenia and bipolar disorder predict creativity. Nat Neurosci 2015;18(7):953–955.PubMedCrossRefGoogle Scholar
  39. 39.
    Kong SW, Lee IH, Leshchiner I, et al. Summarizing polygenic risks for complex diseases in a clinical whole-genome report. Genet Med 2015;17:536–544.PubMedCrossRefGoogle Scholar
  40. 40.
    Bulik-Sullivan BK, Loh PR, Finucane HK, et al. LD Score regression distinguishes confounding from polygenicity in genome-wide association studies. Nat Genet 2015;47(3):291–295.PubMedPubMedCentralCrossRefGoogle Scholar
  41. 41.
    Bulik-Sullivan B, Finucane HK, Anttila V, et al. An atlas of genetic correlations across human diseases and traits. Nat Genet 2015;47(11):1236–1241.PubMedPubMedCentralCrossRefGoogle Scholar
  42. 42.
    Cross-Disorder Group of the Psychiatric Genomics C, Lee SH, Ripke S, et al. Genetic relationship between five psychiatric disorders estimated from genome-wide SNPs. Nat Genet 2013;45(9):984–994.CrossRefGoogle Scholar
  43. 43.
    Gamazon ER, Wheeler HE, Shah KP, et al. A gene-based association method for mapping traits using reference transcriptome data. Nat Genet 2015;47(9):1091–1098.PubMedPubMedCentralCrossRefGoogle Scholar
  44. 44.
    Vervier K, Michaelson JJ. SLINGER: large-scale learning for predicting gene expression. Sci Rep. 2016;6:39360.PubMedPubMedCentralCrossRefGoogle Scholar
  45. 45.
    Solovieff N, Cotsapas C, Lee PH, Purcell SM, Smoller JW. Pleiotropy in complex traits: challenges and strategies. Nat Rev Genet 2013;14(7):483–495.PubMedPubMedCentralCrossRefGoogle Scholar
  46. 46.
    Zhu X, Need AC, Petrovski S, Goldstein DB. One gene, many neuropsychiatric disorders: lessons from Mendelian diseases. Nat Neurosci 2014;17(6):773–781.PubMedCrossRefGoogle Scholar
  47. 47.
    Golzio C, Willer J, Talkowski ME, et al. KCTD13 is a major driver of mirrored neuroanatomical phenotypes of the 16p11.2 copy number variant. Nature 2012;485(7398):363–367.PubMedPubMedCentralCrossRefGoogle Scholar
  48. 48.
    Jacquemont S, Reymond A, Zufferey F, et al. Mirror extreme BMI phenotypes associated with gene dosage at the chromosome 16p11.2 locus. Nature 2011;478(7367):97–102.PubMedPubMedCentralCrossRefGoogle Scholar
  49. 49.
    Brunetti-Pierri N, Berg JS, Scaglia F, et al. Recurrent reciprocal 1q21.1 deletions and duplications associated with microcephaly or macrocephaly and developmental and behavioral abnormalities. Nat Genet 2008;40(12):1466–1471.PubMedPubMedCentralCrossRefGoogle Scholar
  50. 50.
    Franco LM, de Ravel T, Graham BH, et al. A syndrome of short stature, microcephaly and speech delay is associated with duplications reciprocal to the common Sotos syndrome deletion. Eur J Hum Genet 2010;18(2):258–261.PubMedCrossRefGoogle Scholar
  51. 51.
    Crespi B, Stead P, Elliot M. Evolution in health and medicine Sackler colloquium: comparative genomics of autism and schizophrenia. Proc Natl Acad Sci U S A 2010;107(Suppl; 1):1736–1741.PubMedPubMedCentralCrossRefGoogle Scholar
  52. 52.
    Michaelson JJ, Shi Y, Gujral M, et al. Whole-genome sequencing in autism identifies hot spots for de novo germline mutation. Cell 2012;151(7):1431–1442.PubMedPubMedCentralCrossRefGoogle Scholar
  53. 53.
    Kong A, Frigge ML, Masson G, et al. Rate of de novo mutations and the importance of father's age to disease risk. Nature 2012;488(7412):471–475.PubMedPubMedCentralCrossRefGoogle Scholar
  54. 54.
    Adzhubei I, Jordan DM, Sunyaev SR. Predicting functional effect of human missense mutations using PolyPhen-2. Curr Protoc Hum Genet 2013;Chapter 7:Unit7.20.Google Scholar
  55. 55.
    Cooper GM, Stone EA, Asimenos G, et al. Distribution and intensity of constraint in mammalian genomic sequence. Genome Res 2005;15(7):901-913.PubMedPubMedCentralCrossRefGoogle Scholar
  56. 56.
    Kircher M, Witten DM, Jain P, O'Roak BJ, Cooper GM, Shendure J. A general framework for estimating the relative pathogenicity of human genetic variants. Nat Genet 2014;46(3):310–315.PubMedPubMedCentralCrossRefGoogle Scholar
  57. 57.
    Costanzo M, VanderSluis B, Koch EN, et al. A global genetic interaction network maps a wiring diagram of cellular function. Science 2016;353:aaf1420.PubMedCrossRefGoogle Scholar
  58. 58.
    Mitra I, Lavillaureix A, Yeh E, et al. Reverse pathway genetic approach identifies epistasis in autism spectrum disorders. PLOS Genet 2017;13(1):e1006516.PubMedPubMedCentralCrossRefGoogle Scholar
  59. 59.
    Fatjo-Vilas M, Prats C, Pomarol-Clotet E, et al. Involvement of NRN1 gene in schizophrenia-spectrum and bipolar disorders and its impact on age at onset and cognitive functioning. World J Biol Psychiatry 2016;17(2):129–139.PubMedCrossRefGoogle Scholar
  60. 60.
    Schott BH, Assmann A, Schmierer P, et al. Epistatic interaction of genetic depression risk variants in the human subgenual cingulate cortex during memory encoding. Transl Psychiatry 2014;4:e372.PubMedPubMedCentralCrossRefGoogle Scholar
  61. 61.
    Szczepankiewicz A, Leszczynska-Rodziewicz A, Pawlak J, et al. Epistatic interaction between CRHR1 and AVPR1b variants as a predictor of major depressive disorder. Psychiatr Genet 2013;23(6):239–246.PubMedCrossRefGoogle Scholar
  62. 62.
    Maciukiewicz M, Dmitrzak-Weglarz M, Pawlak J, et al. Analysis of genetic association and epistasis interactions between circadian clock genes and symptom dimensions of bipolar affective disorder. Chronobiol Int 2014;31(6):770–778.PubMedCrossRefGoogle Scholar
  63. 63.
    Nicodemus KK, Hargreaves A, Morris D, et al. Variability in working memory performance explained by epistasis vs polygenic scores in the ZNF804A pathway. JAMA Psychiat 2014;71(7):778-785.CrossRefGoogle Scholar
  64. 64.
    Chiesa A, Lia L, Lia C, et al. Investigation of possible epistatic interactions between GRIA2 and GRIA4 variants on clinical outcomes in patients with major depressive disorder. J Int Med Res 2013;41(3):809–815.PubMedCrossRefGoogle Scholar
  65. 65.
    Werling DM, Geschwind DH. Sex differences in autism spectrum disorders. Curr Opin Neurol 2013;26(2):146–153.PubMedPubMedCentralCrossRefGoogle Scholar
  66. 66.
    Werling DM, Geschwind DH. Recurrence rates provide evidence for sex-differential, familial genetic liability for autism spectrum disorders in multiplex families and twins. Mol Autism 2015;6:27.PubMedPubMedCentralCrossRefGoogle Scholar
  67. 67.
    Jacquemont S, Coe BP, Hersch M, et al. A higher mutational burden in females supports a “female protective model” in neurodevelopmental disorders. Am J Hum Genet 2014;94:415–425.PubMedPubMedCentralCrossRefGoogle Scholar
  68. 68.
    Gockley J, Willsey AJ, Dong S, Dougherty JD, Constantino JN, Sanders SJ. The female protective effect in autism spectrum disorder is not mediated by a single genetic locus. Mol Autism 2015;6:25.PubMedPubMedCentralCrossRefGoogle Scholar
  69. 69.
    Hoffman EJ, Turner KJ, Fernandez JM, et al. Estrogens suppress a behavioral phenotype in zebrafish mutants of the autism risk gene, CNTNAP2. Neuron 2016;89(4):725–733.PubMedPubMedCentralCrossRefGoogle Scholar
  70. 70.
    Bao AM, Swaab DF. Sexual differentiation of the human brain: relation to gender identity, sexual orientation and neuropsychiatric disorders. Front Neuroendocrinol 2011;32:214–226.PubMedCrossRefGoogle Scholar
  71. 71.
    Mazina V, Gerdts J, Trinh S, et al. Epigenetics of autism-related impairment: copy number variation and maternal infection. J Dev Behav Pediatr 2015;36(2):61–67.PubMedPubMedCentralCrossRefGoogle Scholar
  72. 72.
    Mandy W, Lai MC. Annual Research Review: The role of the environment in the developmental psychopathology of autism spectrum condition. J Child Psychol Psychiatry 2016;57(3):271–292.PubMedCrossRefGoogle Scholar
  73. 73.
    Klengel T, Binder EB. Gene-environment interactions in major depressive disorder. Can J Psychiatry 2013;58(2):76–83.PubMedCrossRefGoogle Scholar
  74. 74.
    Ayhan Y, McFarland R, Pletnikov MV. Animal models of gene-environment interaction in schizophrenia: a dimensional perspective. Prog Neurobiol 2016;136:1–27.PubMedCrossRefGoogle Scholar
  75. 75.
    European Network of National Networks studying Gene–Environment Interactions in Schizophrenia (EU-GEI), van Os J, Rutten BP, et al. Identifying gene-environment interactions in schizophrenia: contemporary challenges for integrated, large-scale investigations. Schizophr Bull 2014;40(4):729–736.CrossRefGoogle Scholar
  76. 76.
    Voisey J, Young RM, Lawford BR, Morris CP. Progress towards understanding the genetics of posttraumatic stress disorder. J Anxiety Disord 2014;28(8):873–883.PubMedCrossRefGoogle Scholar
  77. 77.
    Smoller JW. The genetics of stress-related disorders: PTSD, depression, and anxiety disorders. Neuropsychopharmacology 2016;41(1):297–319.PubMedCrossRefGoogle Scholar
  78. 78.
    McKenzie K, Milton M, Smith G, Ouellette-Kuntz H. Systematic review of the prevalence and incidence of intellectual disabilities: current trends and issues. Curr Dev Disord Rep 2016;3(2):104–115.CrossRefGoogle Scholar
  79. 79.
    Einfeld SL, Ellis LA, Emerson E. Comorbidity of intellectual disability and mental disorder in children and adolescents: a systematic review. J Intellect Develop Disabil 2011;36(2):137–143.CrossRefGoogle Scholar
  80. 80.
    Morgan VA, Leonard H, Bourke J, Jablensky A. Intellectual disability co-occurring with schizophrenia and other psychiatric illness: population-based study. Br J Psychiatry 2008;193(5):364–372.PubMedCrossRefGoogle Scholar
  81. 81.
    Faraone SV, Ghirardi L, Kuja-Halkola R, Lichtenstein P, Larsson H. The familial co-aggregation of attention-deficit/hyperactivity disorder and intellectual disability: a register-based family study. J Am Acad Child Adolesc Psychiatry 2017;56(2):167–174 e1.PubMedCrossRefGoogle Scholar
  82. 82.
    Reichenberg A, Cederlof M, McMillan A, et al. Discontinuity in the genetic and environmental causes of the intellectual disability spectrum. Proc Natl Acad Sci U S A 2016;113(4):1098–1103.PubMedCrossRefGoogle Scholar
  83. 83.
    Plomin R. Genetics and general cognitive ability. Nature 1999;402(6761 Suppl.):C25–C29.PubMedCrossRefGoogle Scholar
  84. 84.
    Nevado J, Mergener R, Palomares-Bralo M, et al. New microdeletion and microduplication syndromes: a comprehensive review. Genet Mol Biol 2014;37(1 Suppl.):210–219.PubMedCrossRefGoogle Scholar
  85. 85.
    Gilissen C, Hehir-Kwa JY, Thung DT, et al. Genome sequencing identifies major causes of severe intellectual disability. Nature 2014;511(7509):344–347.PubMedCrossRefGoogle Scholar
  86. 86.
    Reuter MS, Tawamie H, Buchert R, et al. Diagnostic yield and novel candidate genes by exome sequencing in 152 consanguineous families with neurodevelopmental disorders. JAMA Psychiatry 2017;74:293–299.PubMedCrossRefGoogle Scholar
  87. 87.
    Lelieveld SH, Reijnders MR, Pfundt R, et al. Meta-analysis of 2,104 trios provides support for 10 new genes for intellectual disability. Nat Neurosci 2016;19(9):1194–1196.PubMedCrossRefGoogle Scholar
  88. 88.
    Stessman HA, Bernier R, Eichler EE. A genotype-first approach to defining the subtypes of a complex disease. Cell 2014;156(5):872–877.PubMedPubMedCentralCrossRefGoogle Scholar
  89. 89.
    Stessman HA, Willemsen MH, Fenckova M, et al. Disruption of POGZ is associated with intellectual disability and autism spectrum disorders. Am J Hum Genet 2016;98:541–552.PubMedPubMedCentralCrossRefGoogle Scholar
  90. 90.
    Bronicki LM, Redin C, Drunat S, et al. Ten new cases further delineate the syndromic intellectual disability phenotype caused by mutations in DYRK1A. Eur J Hum Genet 2015;23(11):1482–1487.PubMedPubMedCentralCrossRefGoogle Scholar
  91. 91.
    Bhoj EJ, Li D, Harr M, et al. Mutations in TBCK, encoding TBC1-domain-containing kinase, lead to a recognizable syndrome of intellectual disability and hypotonia. Am J Hum Genet 2016;98(4):782–788.PubMedPubMedCentralCrossRefGoogle Scholar
  92. 92.
    Harms FL, Girisha KM, Hardigan AA, et al. Mutations in EBF3 disturb transcriptional profiles and cause intellectual disability, ataxia, and facial dysmorphism. Am J Hum Genet 2017;100(1):117–127.PubMedCrossRefGoogle Scholar
  93. 93.
    Hempel M, Cremer K, Ockeloen CW, et al. De novo mutations in CHAMP1 cause intellectual disability with severe speech impairment. Am J Hum Genet 2015;97(3):493–500.PubMedPubMedCentralCrossRefGoogle Scholar
  94. 94.
    Kopajtich R, Murayama K, Janecke AR, et al. Biallelic IARS mutations cause growth retardation with prenatal onset, intellectual disability, muscular hypotonia, and infantile hepatopathy. Am J Hum Genet 2016;99(2):414–422.PubMedPubMedCentralCrossRefGoogle Scholar
  95. 95.
    van Karnebeek CD, Stockler S. Treatable inborn errors of metabolism causing intellectual disability: a systematic literature review. Mol Genet Metab 2012;105(3):368–381.PubMedCrossRefGoogle Scholar
  96. 96.
    Picker JD, Walsh CA. New innovations: therapeutic opportunities for intellectual disabilities. Ann Neurol 2013;74(3):382–390.PubMedCrossRefGoogle Scholar
  97. 97.
    Al Hafid N, Christodoulou J. Phenylketonuria: a review of current and future treatments. Transl Pediatr 2015;4(4):304–317.PubMedPubMedCentralGoogle Scholar
  98. 98.
    van de Kamp JM, Mancini GM, Salomons GS. X-linked creatine transporter deficiency: clinical aspects and pathophysiology. J Inherit Metab Dis 2014;37(5):715–733.PubMedCrossRefGoogle Scholar
  99. 99.
    Burrage LC, Nagamani SC, Campeau PM, Lee BH. Branched-chain amino acid metabolism: from rare Mendelian diseases to more common disorders. Hum Mol Genet 2014;23(R1):R1–R8.PubMedPubMedCentralCrossRefGoogle Scholar
  100. 100.
    Novarino G, El-Fishawy P, Kayserili H, et al. Mutations in BCKD-kinase lead to a potentially treatable form of autism with epilepsy. Science 2012;338(6105):394–397.PubMedPubMedCentralCrossRefGoogle Scholar
  101. 101.
    Scott K, Gadomski T, Kozicz T, Morava E. Congenital disorders of glycosylation: new defects and still counting. J Inherit Metab Dis 2014;37(4):609–617.PubMedPubMedCentralCrossRefGoogle Scholar
  102. 102.
    Platt FM, Boland B, van der Spoel AC. The cell biology of disease: lysosomal storage disorders: the cellular impact of lysosomal dysfunction. J Cell Biol 2012;199(5):723–734.PubMedPubMedCentralCrossRefGoogle Scholar
  103. 103.
    Kochinke K, Zweier C, Nijhof B, et al. Systematic phenomics analysis deconvolutes genes mutated in intellectual disability into biologically coherent modules. Am J Hum Genet 2016;98(1):149–164.PubMedPubMedCentralCrossRefGoogle Scholar
  104. 104.
    Verpelli C, Galimberti I, Gomez-Mancilla B, Sala C. Molecular basis for prospective pharmacological treatment strategies in intellectual disability syndromes. Dev Neurobiol 2014;74(2):197–206.PubMedCrossRefGoogle Scholar
  105. 105.
    Matson JL, Bamburg JW, Mayville EA, et al. Psychopharmacology and mental retardation: a 10 year review (1990–1999). Res Dev Disabil 2000;21:263–296.PubMedCrossRefGoogle Scholar
  106. 106.
    Matson JL, Bielecki J, Mayville SB, Matson ML. Psychopharmacology research for individuals with mental retardation: methodological issues and suggestions. Res Dev Disabil 2003;24(3):149–157.PubMedCrossRefGoogle Scholar
  107. 107.
    Matson JL, Mahan S. Antipsychotic drug side effects for persons with intellectual disability. Res Dev Disabil 2010;31(6):1570–1576.PubMedCrossRefGoogle Scholar
  108. 108.
    Jacquemont S, Curie A, des Portes V, et al. Epigenetic modification of the FMR1 gene in fragile X syndrome is associated with differential response to the mGluR5 antagonist AFQ056. Sci Transl Med 2011;3(64):64ra1.PubMedCrossRefGoogle Scholar
  109. 109.
    Berry-Kravis E, Des Portes V, Hagerman R, et al. Mavoglurant in fragile X syndrome: Results of two randomized, double-blind, placebo-controlled trials. Sci Transl Med 2016;8(321):321ra5.PubMedCrossRefGoogle Scholar
  110. 110.
    Gantois I, Pop AS, de Esch CE, et al. Chronic administration of AFQ056/Mavoglurant restores social behaviour in Fmr1 knockout mice. Behav Brain Res 2013;239:72–79.PubMedCrossRefGoogle Scholar
  111. 111.
    Pop AS, Levenga J, de Esch CE, et al. Rescue of dendritic spine phenotype in Fmr1 KO mice with the mGluR5 antagonist AFQ056/Mavoglurant. Psychopharmacology 2014;231:1227–1235.PubMedCrossRefGoogle Scholar
  112. 112.
    Seese RR, Maske AR, Lynch G, Gall CM. Long-term memory deficits are associated with elevated synaptic ERK1/2 activation and reversed by mGluR5 antagonism in an animal model of autism. Neuropsychopharmacology 2014;39(7):1664–1673.PubMedPubMedCentralCrossRefGoogle Scholar
  113. 113.
    Berry-Kravis E, Krause SE, Block SS, et al. Effect of CX516, an AMPA-modulating compound, on cognition and behavior in fragile X syndrome: a controlled trial. J Child Adolesc Psychopharmacol 2006;16(5):525–540..PubMedCrossRefGoogle Scholar
  114. 114.
    Goff DC, Lamberti JS, Leon AC, et al. A placebo-controlled add-on trial of the Ampakine, CX516, for cognitive deficits in schizophrenia. Neuropsychopharmacology 2008;33(3):465–472.PubMedCrossRefGoogle Scholar
  115. 115.
    Berry-Kravis EM, Hessl D, Rathmell B, et al. Effects of STX209 (arbaclofen) on neurobehavioral function in children and adults with fragile X syndrome: a randomized, controlled, phase 2 trial. Sci Transl Med 2012;4(152):152ra27.CrossRefGoogle Scholar
  116. 116.
    Troca-Marin JA, Alves-Sampaio A, Montesinos ML. Deregulated mTOR-mediated translation in intellectual disability. Prog Neurobiol 2012;96(2):268–282.PubMedCrossRefGoogle Scholar
  117. 117.
    Troca-Marin JA, Casanas JJ, Benito I, Montesinos ML. The Akt-mTOR pathway in Down's syndrome: the potential use of rapamycin/rapalogs for treating cognitive deficits. CNS Neurol Disord Drug Targets 2014;13(1):34–40.PubMedCrossRefGoogle Scholar
  118. 118.
    Sandin S, Lichtenstein P, Kuja-Halkola R, Larsson H, Hultman CM, Reichenberg A. The familial risk of autism. JAMA 2014;311(17):1770–1777.PubMedPubMedCentralCrossRefGoogle Scholar
  119. 119.
    Christensen DL, Bilder DA, Zahorodny W, et al. Prevalence and characteristics of autism spectrum disorder among 4-year-old children in the autism and developmental disabilities monitoring network. J Dev Behav Pediatr 2016;37(1):1–8.PubMedCrossRefGoogle Scholar
  120. 120.
    He X, Sanders SJ, Liu L, et al. Integrated model of de novo and inherited genetic variants yields greater power to identify risk genes. PLOS Genet 2013;9(8):e1003671.PubMedPubMedCentralCrossRefGoogle Scholar
  121. 121.
    Liu L, Lei J, Sanders SJ, et al. DAWN: a framework to identify autism genes and subnetworks using gene expression and genetics. Mol Autism 2014;5(1):22.PubMedPubMedCentralCrossRefGoogle Scholar
  122. 122.
    Michaelson JJ, Sebat J. forestSV: structural variant discovery through statistical learning. Nat Methods 2012;9(8):819–821.PubMedPubMedCentralCrossRefGoogle Scholar
  123. 123.
    Robinson EB, St Pourcain B, Anttila V, et al. Genetic risk for autism spectrum disorders and neuropsychiatric variation in the general population. Nat Genet 2016;48(5):552–555.PubMedPubMedCentralCrossRefGoogle Scholar
  124. 124.
    Weiss LA, Shen Y, Korn JM, et al. Association between microdeletion and microduplication at 16p11.2 and autism. N Engl J Med 2008;358(7):667–675.PubMedCrossRefGoogle Scholar
  125. 125.
    Jiang YH, Yuen RK, Jin X, et al. Detection of clinically relevant genetic variants in autism spectrum disorder by whole-genome sequencing. Am J Hum Genet 2013;93(2):249–263.PubMedPubMedCentralCrossRefGoogle Scholar
  126. 126.
    O'Roak BJ, Vives L, Fu W, et al. Multiplex targeted sequencing identifies recurrently mutated genes in autism spectrum disorders. Science 2012;338(6114):1619–1622.PubMedPubMedCentralCrossRefGoogle Scholar
  127. 127.
    Helsmoortel C, Vulto-van Silfhout AT, Coe BP, et al. A SWI/SNF-related autism syndrome caused by de novo mutations in ADNP. Nat Genet 2014;46:380–384.PubMedPubMedCentralCrossRefGoogle Scholar
  128. 128.
    Reissner C, Runkel F, Missler M. Neurexins. Genome Biol 2013;14(9):213.PubMedPubMedCentralCrossRefGoogle Scholar
  129. 129.
    Krueger DD, Tuffy LP, Papadopoulos T, Brose N. The role of neurexins and neuroligins in the formation, maturation, and function of vertebrate synapses. Curr Opin Neurobiol 2012;22(3):412–422.PubMedCrossRefGoogle Scholar
  130. 130.
    Guilmatre A, Huguet G, Delorme R, Bourgeron T. The emerging role of SHANK genes in neuropsychiatric disorders. Develop Neurobiol 2014;74(2):113–122.CrossRefGoogle Scholar
  131. 131.
    Zuko A, Kleijer KT, Oguro-Ando A, et al. Contactins in the neurobiology of autism. Eur J Pharmacol 2013;719(1-3):63–74.PubMedCrossRefGoogle Scholar
  132. 132.
    Blumenthal I, Ragavendran A, Erdin S, et al. Transcriptional consequences of 16p11.2 deletion and duplication in mouse cortex and multiplex autism families. Am J Hum Genet 2014;94(6):870–883.PubMedPubMedCentralCrossRefGoogle Scholar
  133. 133.
    Krumm N, Turner TN, Baker C, et al. Excess of rare, inherited truncating mutations in autism. Nat Genet 2015;47(6):582–588.PubMedPubMedCentralCrossRefGoogle Scholar
  134. 134.
    Deriziotis P, O'Roak BJ, Graham SA, et al. De novo TBR1 mutations in sporadic autism disrupt protein functions. Nat Commun 2014;5:4954.PubMedPubMedCentralCrossRefGoogle Scholar
  135. 135.
    Sweatt JD. Pitt-Hopkins Syndrome: intellectual disability due to loss of TCF4-regulated gene transcription. Exp Mol Med 2013;45:e21.PubMedPubMedCentralCrossRefGoogle Scholar
  136. 136.
    Michalon A, Sidorov M, Ballard TM, et al. Chronic pharmacological mGlu5 inhibition corrects fragile X in adult mice. Neuron 2012;74(1):49–56.PubMedCrossRefGoogle Scholar
  137. 137.
    Chapleau CA, Lane J, Pozzo-Miller L, Percy AK. Evaluation of current pharmacological treatment options in the management of Rett syndrome: from the present to future therapeutic alternatives. Curr Clin Pharmacol 2013;8(4):358–369.PubMedPubMedCentralCrossRefGoogle Scholar
  138. 138.
    Buchovecky CM, Turley SD, Brown HM, et al. A suppressor screen in Mecp2 mutant mice implicates cholesterol metabolism in Rett syndrome. Nat Genet 2013;45(9):1013–1020.PubMedPubMedCentralCrossRefGoogle Scholar
  139. 139.
    Sztainberg Y, Chen HM, Swann JW, et al. Reversal of phenotypes in MECP2 duplication mice using genetic rescue or antisense oligonucleotides. Nature 2015;528(7580):123–126.PubMedPubMedCentralGoogle Scholar
  140. 140.
    Shcheglovitov A, Shcheglovitova O, Yazawa M, et al. SHANK3 and IGF1 restore synaptic deficits in neurons from 22q13 deletion syndrome patients. Nature 2013;503(7475):267–271.PubMedGoogle Scholar
  141. 141.
    Han S, Tai C, Westenbroek RE, et al. Autistic-like behaviour in Scn1a+/– mice and rescue by enhanced GABA-mediated neurotransmission. Nature 2012;489(7416):385–390.PubMedPubMedCentralCrossRefGoogle Scholar
  142. 142.
    Tsai PT, Hull C, Chu Y, et al. Autistic-like behaviour and cerebellar dysfunction in Purkinje cell Tsc1 mutant mice. Nature 2012;488(7413):647–651.PubMedPubMedCentralCrossRefGoogle Scholar
  143. 143.
    Tian D, Stoppel LJ, Heynen AJ, et al. Contribution of mGluR5 to pathophysiology in a mouse model of human chromosome 16p11.2 microdeletion. Nat Neurosci 2015;18(2):182–184.PubMedPubMedCentralCrossRefGoogle Scholar
  144. 144.
    Ghirardi L, Brikell I, Kuja-Halkola R, et al. The familial co-aggregation of ASD and ADHD: a register-based cohort study. Mol Psychiatry 2017 Feb 28.Google Scholar
  145. 145.
    Polanczyk G, de Lima MS, Horta BL, Biederman J, Rohde LA. The worldwide prevalence of ADHD: a systematic review and metaregression analysis. Am J Psychiatry 2007;164(6):942–948.PubMedCrossRefGoogle Scholar
  146. 146.
    Willcutt EG. The prevalence of DSM-IV attention-deficit/hyperactivity disorder: a meta-analytic review. Neurotherapeutics 2012;9(3):490–499.PubMedPubMedCentralCrossRefGoogle Scholar
  147. 147.
    Simon V, Czobor P, Balint S, Meszaros A, Bitter I. Prevalence and correlates of adult attention-deficit hyperactivity disorder: meta-analysis. Br J Psychiatry 2009;194(3):204–211.PubMedCrossRefGoogle Scholar
  148. 148.
    Franke B, Faraone SV, Asherson P, et al. The genetics of attention deficit/hyperactivity disorder in adults, a review. Mol Psychiatry 2012;17(10):960–987.PubMedCrossRefGoogle Scholar
  149. 149.
    Burt SA. Rethinking environmental contributions to child and adolescent psychopathology: a meta-analysis of shared environmental influences. Psychol Bull 2009;135:608–637.PubMedCrossRefGoogle Scholar
  150. 150.
    Faraone SV, Perlis RH, Doyle AE, et al. Molecular genetics of attention-deficit/hyperactivity disorder. Biol Psychiatry 2005;57:1313–1323.PubMedCrossRefGoogle Scholar
  151. 151.
    Li Z, Chang SH, Zhang LY, Gao L, Wang J. Molecular genetic studies of ADHD and its candidate genes: a review. Psychiatry Res 2014;219(1):10–24.PubMedCrossRefGoogle Scholar
  152. 152.
    Akutagava-Martins GC, Rohde LA, Hutz MH. Genetics of attention-deficit/hyperactivity disorder: an update. Exp Rev Neurother 2016;16:145–156.CrossRefGoogle Scholar
  153. 153.
    Hawi Z, Cummins TD, Tong J, et al. The molecular genetic architecture of attention deficit hyperactivity disorder. Mol Psychiatry 2015;20(3):289–297.PubMedCrossRefGoogle Scholar
  154. 154.
    Bralten J, Franke B, Waldman I, et al. Candidate genetic pathways for attention-deficit/hyperactivity disorder (ADHD) show association to hyperactive/impulsive symptoms in children with ADHD. J Am Acad Child Adolesc Psychiatry 2013;52(11):1204–1212 e1.PubMedCrossRefGoogle Scholar
  155. 155.
    Poelmans G, Pauls DL, Buitelaar JK, Franke B. Integrated genome-wide association study findings: identification of a neurodevelopmental network for attention deficit hyperactivity disorder. Am J Psychiatry 2011;168(4):365–377.PubMedCrossRefGoogle Scholar
  156. 156.
    Elia J, Glessner JT, Wang K, et al. Genome-wide copy number variation study associates metabotropic glutamate receptor gene networks with attention deficit hyperactivity disorder. Nat Genet 2011;44:78–84.PubMedPubMedCentralCrossRefGoogle Scholar
  157. 157.
    Akutagava-Martins GC, Salatino-Oliveira A, Genro JP, et al. Glutamatergic copy number variants and their role in attention-deficit/hyperactivity disorder. Am J Med Genet Part B Neuropsychiatr Genet 2014;165B(6):502–509.CrossRefGoogle Scholar
  158. 158.
    Maltezos S, Horder J, Coghlan S, et al. Glutamate/glutamine and neuronal integrity in adults with ADHD: a proton MRS study. Transl Psychiatry 2014;4:e373.PubMedPubMedCentralCrossRefGoogle Scholar
  159. 159.
    Hadley D, Wu ZL, Kao C, et al. The impact of the metabotropic glutamate receptor and other gene family interaction networks on autism. Nat Commun 2014;5:4074.PubMedPubMedCentralCrossRefGoogle Scholar
  160. 160.
    Naaijen J, Bralten J, Poelmans G, et al. Glutamatergic and GABAergic gene sets in attention-deficit/hyperactivity disorder: association to overlapping traits in ADHD and autism. Transl Psychiatry 2017;7(1):e999.PubMedCrossRefGoogle Scholar
  161. 161.
    Cheng J, Xiong Z, Duffney LJ, et al. Methylphenidate exerts dose-dependent effects on glutamate receptors and behaviors. Biol Psychiatry 2014;76(12):953–962.PubMedPubMedCentralCrossRefGoogle Scholar
  162. 162.
    Park S, Kim BN, Cho SC, et al. The metabotropic glutamate receptor subtype 7 rs3792452 polymorphism is associated with the response to methylphenidate in children with attention-deficit/hyperactivity disorder. J Child Adolesc Psychopharmacol 2014;24(4):223–227.PubMedCrossRefGoogle Scholar
  163. 163.
    O'Sullivan ML, Martini F, von Daake S, Comoletti D, Ghosh A. LPHN3, a presynaptic adhesion-GPCR implicated in ADHD, regulates the strength of neocortical layer 2/3 synaptic input to layer 5. Neural Dev 2014;9:7.PubMedPubMedCentralCrossRefGoogle Scholar
  164. 164.
    Arcos-Burgos M, Jain M, Acosta MT, et al. A common variant of the latrophilin 3 gene, LPHN3, confers susceptibility to ADHD and predicts effectiveness of stimulant medication. Mol Psychiatry 2010;15(11):1053–1066.PubMedCrossRefGoogle Scholar
  165. 165.
    Arcos-Burgos M, Velez JI, Solomon BD, Muenke M. A common genetic network underlies substance use disorders and disruptive or externalizing disorders. Hum Genet 2012;131(6):917–929.PubMedPubMedCentralCrossRefGoogle Scholar
  166. 166.
    Ribases M, Ramos-Quiroga JA, Sanchez-Mora C, et al. Contribution of LPHN3 to the genetic susceptibility to ADHD in adulthood: a replication study. Genes Brain Behav 2011;10(2):149–157.PubMedCrossRefGoogle Scholar
  167. 167.
    Fallgatter AJ, Ehlis AC, Dresler T, et al. Influence of a latrophilin 3 (LPHN3) risk haplotype on event-related potential measures of cognitive response control in attention-deficit hyperactivity disorder (ADHD). Eur Neuropsychopharmacol 2013;23(6):458–468.PubMedCrossRefGoogle Scholar
  168. 168.
    Acosta MT, Velez JI, Bustamante ML, Balog JZ, Arcos-Burgos M, Muenke M. A two-locus genetic interaction between LPHN3 and 11q predicts ADHD severity and long-term outcome. Transl Psychiatry 2011;1:e17.PubMedPubMedCentralCrossRefGoogle Scholar
  169. 169.
    Jain M, Velez JI, Acosta MT, et al. A cooperative interaction between LPHN3 and 11q doubles the risk for ADHD. Mol Psychiatry 2012;17(7):741–747.PubMedCrossRefGoogle Scholar
  170. 170.
    Choudhry Z, Sengupta SM, Grizenko N, et al. LPHN3 and attention-deficit/hyperactivity disorder: interaction with maternal stress during pregnancy. J Child Psychol Psychiatry 2012;53(8):892–902.PubMedCrossRefGoogle Scholar
  171. 171.
    Labbe A, Liu A, Atherton J, et al. Refining psychiatric phenotypes for response to treatment: contribution of LPHN3 in ADHD. Am J Med Genet Part B Neuropsychiatr Genet 2012;159B(7):776–785.CrossRefGoogle Scholar
  172. 172.
    Hwang IW, Lim MH, Kwon HJ, Jin HJ. Association of LPHN3 rs6551665 A/G polymorphism with attention deficit and hyperactivity disorder in Korean children. Gene 2015;566(1):68–73.PubMedCrossRefGoogle Scholar
  173. 173.
    Bruxel EM, Salatino-Oliveira A, Akutagava-Martins GC, et al. LPHN3 and attention-deficit/hyperactivity disorder: a susceptibility and pharmacogenetic study. Genes Brain Behav 2015;14(5):419–427.PubMedCrossRefGoogle Scholar
  174. 174.
    Song J, Kim SW, Hong HJ, et al. Association of SNAP-25, SLC6A2, and LPHN3 with OROS methylphenidate treatment response in attention-deficit/hyperactivity disorder. Clin Neuropharmacol 2014;37(5):136–141.PubMedCrossRefGoogle Scholar
  175. 175.
    Martinez AF, Abe Y, Hong S, et al. An ultraconserved brain-specific enhancer within ADGRL3 (LPHN3) underpins attention-deficit/hyperactivity disorder susceptibility. Biol Psychiatry 2016;80(12):943–954.PubMedCrossRefGoogle Scholar
  176. 176.
    O'Sullivan ML, de Wit J, Savas JN, et al. FLRT proteins are endogenous latrophilin ligands and regulate excitatory synapse development. Neuron 2012;73(5):903–910.PubMedPubMedCentralCrossRefGoogle Scholar
  177. 177.
    Lu YC, Nazarko OV, Sando R, 3rd, Salzman GS, Sudhof TC, Arac D. Structural basis of latrophilin-FLRT-UNC5 interaction in cell adhesion. Structure 2015;23:1678–1691.PubMedPubMedCentralCrossRefGoogle Scholar
  178. 178.
    Lesch KP, Merker S, Reif A, Novak M. Dances with black widow spiders: dysregulation of glutamate signalling enters centre stage in ADHD. Eur Neuropsychopharmacol 2013;23(6):479–491.PubMedCrossRefGoogle Scholar
  179. 179.
    Elia J, Gai X, Xie HM, et al. Rare structural variants found in attention-deficit hyperactivity disorder are preferentially associated with neurodevelopmental genes. Mol Psychiatry 2010;15(6):637–646.PubMedCrossRefGoogle Scholar
  180. 180.
    Lionel AC, Crosbie J, Barbosa N, et al. Rare copy number variation discovery and cross-disorder comparisons identify risk genes for ADHD. Sci Transl Med 2011;3(95):95ra75.PubMedCrossRefGoogle Scholar
  181. 181.
    Williams NM, Zaharieva I, Martin A, et al. Rare chromosomal deletions and duplications in attention-deficit hyperactivity disorder: a genome-wide analysis. Lancet 2010;376(9750):1401–1408.PubMedPubMedCentralCrossRefGoogle Scholar
  182. 182.
    Lesch KP, Timmesfeld N, Renner TJ, et al. Molecular genetics of adult ADHD: converging evidence from genome-wide association and extended pedigree linkage studies. J Neural Transm (Vienna) 2008;115(11):1573–1585.CrossRefGoogle Scholar
  183. 183.
    Zayats T, Jacobsen KK, Kleppe R, et al. Exome chip analyses in adult attention deficit hyperactivity disorder. Transl Psychiatry 2016;6(10):e923.PubMedPubMedCentralCrossRefGoogle Scholar
  184. 184.
    Demontis D, Lescai F, Borglum A, et al. Whole-exome sequencing reveals increased burden of rare functional and disruptive variants in candidate risk genes in individuals with persistent attention-deficit/hyperactivity disorder. J Am Acad Child Adolesc Psychiatry 2016;55(6):521–523.PubMedCrossRefGoogle Scholar
  185. 185.
    Tomblin JB, Records NL, Buckwalter P, Zhang X, Smith E, O'Brien M. Prevalence of specific language impairment in kindergarten children. J Speech Lang Hear Res 1997;40:1245–1260.PubMedPubMedCentralCrossRefGoogle Scholar
  186. 186.
    Lewis BA, Thompson LA. A study of developmental speech and language disorders in twins. J Speech Hear Res 1992;35(5):1086–1094.PubMedCrossRefGoogle Scholar
  187. 187.
    Bishop DV, North T, Donlan C. Genetic basis of specific language impairment: evidence from a twin study. Develop Med Child Neurol 1995;37(1):56–71.PubMedCrossRefGoogle Scholar
  188. 188.
    Tomblin JB, Buckwalter PR. Heritability of poor language achievement among twins. J Speech Lang Hear Res 1998;41(1):188–199.PubMedCrossRefGoogle Scholar
  189. 189.
    Dale PS, Simonoff E, Bishop DV, et al. Genetic influence on language delay in two-year-old children. Nat Neurosci 1998;1(4):324–328.PubMedCrossRefGoogle Scholar
  190. 190.
    Tomblin JB, Mueller KL. How Can the comorbidity with ADHD aid understanding of language and speech disorders? Top Lang Disord 2012;32(3):198–206.PubMedPubMedCentralCrossRefGoogle Scholar
  191. 191.
    Lai CS, Fisher SE, Hurst JA, Vargha-Khadem F, Monaco AP. A forkhead-domain gene is mutated in a severe speech and language disorder. Nature 2001;413(6855):519–523.PubMedCrossRefGoogle Scholar
  192. 192.
    MacDermot KD, Bonora E, Sykes N, et al. Identification of FOXP2 truncation as a novel cause of developmental speech and language deficits. Am J Hum Genet 2005;76(6):1074–1080.PubMedPubMedCentralCrossRefGoogle Scholar
  193. 193.
    Shriberg LD, Ballard KJ, Tomblin JB, Duffy JR, Odell KH, Williams CA. Speech, prosody, and voice characteristics of a mother and daughter with a 7;13 translocation affecting FOXP2. J Speech Lang Hear Res 2006;49(3):500–525.PubMedCrossRefGoogle Scholar
  194. 194.
    Feuk L, Kalervo A, Lipsanen-Nyman M, et al. Absence of a paternally inherited FOXP2 gene in developmental verbal dyspraxia. Am J Hum Genet 2006;79(5):965–972.PubMedPubMedCentralCrossRefGoogle Scholar
  195. 195.
    Mueller KL, Murray JC, Michaelson JJ, Christiansen MH, Reilly S, Tomblin JB. Common genetic variants in FOXP2 are not associated with individual differences in language development. PLOS ONE 2016;11(4):e0152576.PubMedPubMedCentralCrossRefGoogle Scholar
  196. 196.
    Newbury DF, Bonora E, Lamb JA, et al. FOXP2 is not a major susceptibility gene for autism or specific language impairment. Am J Hum Genet 2002;70(5):1318–1327.PubMedPubMedCentralCrossRefGoogle Scholar
  197. 197.
    Gialluisi A, Newbury DF, Wilcutt EG, et al. Genome-wide screening for DNA variants associated with reading and language traits. Genes Brain Behav 2014;13(7):686–701.PubMedPubMedCentralCrossRefGoogle Scholar
  198. 198.
    Simpson NH, Ceroni F, Reader RH, et al. Genome-wide analysis identifies a role for common copy number variants in specific language impairment. Eur J Hum Genet 2015;23(10):1370–1377.PubMedPubMedCentralCrossRefGoogle Scholar
  199. 199.
    Kornilov SA, Rakhlin N, Koposov R, et al. Genome-wide association and exome sequencing study of language disorder in an isolated population. Pediatrics 2016;137(4):e20152469.PubMedPubMedCentralCrossRefGoogle Scholar
  200. 200.
    Villanueva P, Nudel R, Hoischen A, et al. Exome sequencing in an admixed isolated population indicates NFXL1 variants confer a risk for specific language impairment. PLOS Genet 2015;11(3):e1004925.PubMedPubMedCentralCrossRefGoogle Scholar
  201. 201.
    Paschou P, Fernandez TV, Sharp F, Heiman GA, Hoekstra PJ. Genetic susceptibility and neurotransmitters in Tourette syndrome. Int Rev Neurobiol 2013;112:155–177.PubMedPubMedCentralCrossRefGoogle Scholar
  202. 202.
    Comings DE, Comings BG, Devor EJ, Cloninger CR. Detection of major gene for Gilles de la Tourette syndrome. Am J Hum Genet 1984;36(3):586–600.PubMedPubMedCentralGoogle Scholar
  203. 203.
    Pauls DL, Leckman JF. The inheritance of Gilles de la Tourette's syndrome and associated behaviors. Evidence for autosomal dominant transmission. N Engl J Med 1986;315(16):993–997.PubMedCrossRefGoogle Scholar
  204. 204.
    Walkup JT, LaBuda MC, Singer HS, Brown J, Riddle MA, Hurko O. Family study and segregation analysis of Tourette syndrome: evidence for a mixed model of inheritance. Am J Hum Genet 1996;59(3):684–693.PubMedPubMedCentralGoogle Scholar
  205. 205.
    State MW. The genetics of Tourette disorder. Curr Opin Genet Dev 2011;21:302–309.PubMedPubMedCentralCrossRefGoogle Scholar
  206. 206.
    Hirschtritt ME, Lee PC, Pauls DL, et al. Lifetime prevalence, age of risk, and genetic relationships of comorbid psychiatric disorders in Tourette syndrome. JAMA Psychiat 2015;72(4):325–333.CrossRefGoogle Scholar
  207. 207.
    Ercan-Sencicek AG, Stillman AA, Ghosh AK, et al. L-histidine decarboxylase and Tourette's syndrome. N Engl J Med 2010;362(20):1901–1908.PubMedPubMedCentralCrossRefGoogle Scholar
  208. 208.
    Fernandez TV, Sanders SJ, Yurkiewicz IR, et al. Rare copy number variants in tourette syndrome disrupt genes in histaminergic pathways and overlap with autism. Biol Psychiatry 2012;71(5):392–402.PubMedCrossRefGoogle Scholar
  209. 209.
    Karagiannidis I, Dehning S, Sandor P, et al. Support of the histaminergic hypothesis in Tourette syndrome: association of the histamine decarboxylase gene in a large sample of families. J Med Genet 2013;50(11):760–764.PubMedCrossRefGoogle Scholar
  210. 210.
    Castellan Baldan L, Williams KA, Gallezot JD, et al. Histidine decarboxylase deficiency causes tourette syndrome: parallel findings in humans and mice. Neuron 2014;81(1):77-90.PubMedCrossRefGoogle Scholar
  211. 211.
    Scharf JM, Yu D, Mathews CA, et al. Genome-wide association study of Tourette's syndrome. Mol Psychiatry 2013;18(6):721–728.PubMedCrossRefGoogle Scholar
  212. 212.
    Paschou P, Yu D, Gerber G, et al. Genetic association signal near NTN4 in Tourette syndrome. Ann Neurol 2014;76(2):310–315.PubMedPubMedCentralCrossRefGoogle Scholar
  213. 213.
    Padmanabhuni SS, Houssari R, Esserlind AL, et al. Investigation of SNP rs2060546 Immediately upstream to NTN4 in a Danish Gilles de la Tourette syndrome cohort. Front Neurosci 2016;10:531.PubMedPubMedCentralCrossRefGoogle Scholar
  214. 214.
    Zilhao NR, Padmanabhuni SS, Pagliaroli L, et al. Epigenome-wide association study of tic disorders. Twin Res Hum Genet 2015;18(6):699–709.PubMedCrossRefGoogle Scholar
  215. 215.
    Abdulkadir M, Tischfield JA, King RA, et al. Pre- and perinatal complications in relation to Tourette syndrome and co-occurring obsessive-compulsive disorder and attention-deficit/hyperactivity disorder. J Psychiatr Res 2016;82:126–135.PubMedCrossRefGoogle Scholar
  216. 216.
    Dietrich A, Fernandez TV, King RA, et al. The Tourette International Collaborative Genetics (TIC Genetics) study, finding the genes causing Tourette syndrome: objectives and methods. Eur Child Adolesc Psychiatry 2015;24(2):141–151.PubMedCrossRefGoogle Scholar
  217. 217.
    Regier DA, Narrow WE, Rae DS, Manderscheid RW, Locke BZ, Goodwin FK. The de facto US mental and addictive disorders service system. Epidemiologic catchment area prospective 1-year prevalence rates of disorders and services. Arch Gen Psychiatry 1993;50:85–94.PubMedCrossRefGoogle Scholar
  218. 218.
    Sullivan PF, Kendler KS, Neale MC. Schizophrenia as a complex trait: evidence from a meta-analysis of twin studies. Arch Gen Psychiatry 2003;60(12):1187–1192.PubMedCrossRefGoogle Scholar
  219. 219.
    Lichtenstein P, Yip BH, Bjork C, et al. Common genetic determinants of schizophrenia and bipolar disorder in Swedish families: a population-based study. Lancet 2009;373(9659):234–239.PubMedCrossRefGoogle Scholar
  220. 220.
    Buckley PF, Miller BJ, Lehrer DS, Castle DJ. Psychiatric comorbidities and schizophrenia. Schizophr Bull 2009;35(2):383–402.PubMedCrossRefGoogle Scholar
  221. 221.
    Rees E, O’Donovan MC, Owen MJ. Genetics of schizophrenia. Curr Opin Behav Sci 2015;2:8–14.CrossRefGoogle Scholar
  222. 222.
    Purcell SM, Moran JL, Fromer M, et al. A polygenic burden of rare disruptive mutations in schizophrenia. Nature 2014;506(7487):185–190.PubMedPubMedCentralCrossRefGoogle Scholar
  223. 223.
    Neale BM, Sklar P. Genetic analysis of schizophrenia and bipolar disorder reveals polygenicity but also suggests new directions for molecular interrogation. Curr Opin Neurobiol 2015;30:131–138.PubMedCrossRefGoogle Scholar
  224. 224.
    Schizophrenia Working Group of the Psychiatric Genomics Consortium. Biological insights from 108 schizophrenia-associated genetic loci. Nature 2014;511(7510):421–427.PubMedCentralCrossRefGoogle Scholar
  225. 225.
    Sekar A, Bialas AR, de Rivera H, et al. Schizophrenia risk from complex variation of complement component 4. Nature 2016;530(7589):177–183.PubMedPubMedCentralCrossRefGoogle Scholar
  226. 226.
    Dhindsa RS, Goldstein DB. Schizophrenia: from genetics to physiology at last. Nature 2016;530(7589):162–163.PubMedCrossRefGoogle Scholar
  227. 227.
    Hall J, Trent S, Thomas KL, O'Donovan MC, Owen MJ. Genetic risk for schizophrenia: convergence on synaptic pathways involved in plasticity. Biol Psychiatry 2015;77(1):52–58.PubMedCrossRefGoogle Scholar
  228. 228.
    Kessler RC, Chiu WT, Demler O, Merikangas KR, Walters EE. Prevalence, severity, and comorbidity of 12-month DSM-IV disorders in the National Comorbidity Survey Replication. Arch Gen Psychiatry 2005;62(6):617–627.PubMedPubMedCentralCrossRefGoogle Scholar
  229. 229.
    Barnett JH, Smoller JW. The genetics of bipolar disorder. Neuroscience 2009;164(1):331–343.PubMedPubMedCentralCrossRefGoogle Scholar
  230. 230.
    Crump C, Sundquist K, Winkleby MA, Sundquist J. Comorbidities and mortality in bipolar disorder: a Swedish national cohort study. JAMA Psychiat 2013;70(9):931–939.CrossRefGoogle Scholar
  231. 231.
    Hou L, Bergen SE, Akula N, et al. Genome-wide association study of 40,000 individuals identifies two novel loci associated with bipolar disorder. Hum Mol Genet 2016;25:3383–3394.PubMedCrossRefGoogle Scholar
  232. 232.
    Goes FS, Pirooznia M, Parla JS, et al. Exome sequencing of familial bipolar disorder. JAMA Psychiat 2016;73(6):590–597.CrossRefGoogle Scholar
  233. 233.
    Demyttenaere K, Bruffaerts R, Posada-Villa J, et al. Prevalence, severity, and unmet need for treatment of mental disorders in the World Health Organization World Mental Health Surveys. JAMA 2004;291(21):2581–2590.PubMedCrossRefGoogle Scholar
  234. 234.
    Kessler RC, Berglund P, Demler O, et al. The epidemiology of major depressive disorder: results from the National Comorbidity Survey Replication (NCS-R). JAMA 2003;289(23):3095–3105.PubMedCrossRefGoogle Scholar
  235. 235.
    Thaipisuttikul P, Ittasakul P, Waleeprakhon P, Wisajun P, Jullagate S. Psychiatric comorbidities in patients with major depressive disorder. Neuropsychiatr Dis Treat 2014;10:2097–2103.PubMedPubMedCentralGoogle Scholar
  236. 236.
    Kendler KS, Gatz M, Gardner CO, Pedersen NL. A Swedish national twin study of lifetime major depression. Am J Psychiatry 2006;163(1):109–114.PubMedCrossRefGoogle Scholar
  237. 237.
    Sullivan PF, Neale MC, Kendler KS. Genetic epidemiology of major depression: review and meta-analysis. Am J Psychiatry 2000;157(10):1552–1562.PubMedCrossRefGoogle Scholar
  238. 238.
    Flint J, Kendler KS. The genetics of major depression. Neuron 2014;81(3):484–503.PubMedPubMedCentralCrossRefGoogle Scholar
  239. 239.
    Hyde CL, Nagle MW, Tian C, et al. Identification of 15 genetic loci associated with risk of major depression in individuals of European descent. Nat Genet 2016;48(9):1031–1036.PubMedCrossRefGoogle Scholar
  240. 240.
    CONVERGE Consortium. Sparse whole-genome sequencing identifies two loci for major depressive disorder. Nature 2015;523(7562):588–591.PubMedCentralCrossRefGoogle Scholar
  241. 241.
    Jansen R, Penninx BW, Madar V, et al. Gene expression in major depressive disorder. Mol Psychiatry 2016;21(3):339–347.PubMedCrossRefGoogle Scholar
  242. 242.
    Major Depressive Disorder Working Group of the Psychiatric GWAS Consortium, Ripke S, Wray NR, et al. A mega-analysis of genome-wide association studies for major depressive disorder. Mol Psychiatry 2013;18(4):497–511.CrossRefGoogle Scholar
  243. 243.
    Kappelmann N, Lewis G, Dantzer R, Jones PB, Khandaker GM. Antidepressant activity of anti-cytokine treatment: a systematic review and meta-analysis of clinical trials of chronic inflammatory conditions. Mol Psychiatry 2016 Oct 18 .Google Scholar

Copyright information

© The American Society for Experimental NeuroTherapeutics, Inc. 2017

Authors and Affiliations

  1. 1.Department of PsychiatryUniversity of Iowa Carver College of MedicineIowa CityUSA
  2. 2.Department of Biomedical EngineeringUniversity of Iowa College of EngineeringIowa CityUSA
  3. 3.Department of Communication Sciences and DisordersUniversity of Iowa College of Liberal Arts and SciencesIowa CityUSA
  4. 4.Iowa Institute of Human GeneticsUniversity of IowaIowa CityUSA
  5. 5.Genetics Cluster InitiativeUniversity of IowaIowa CityUSA
  6. 6.The DeLTA CenterUniversity of IowaIowa CityUSA
  7. 7.University of Iowa Informatics Initiative, University of IowaIowa CityUSA

Personalised recommendations