Neurotherapeutics

, Volume 14, Issue 3, pp 630–645 | Cite as

Targeting Adult Neurogenesis to Optimize Hippocampal Circuits in Aging

Review

Abstract

Millions of individuals suffer from age-related cognitive decline, defined by impaired memory precision. Increased understanding of hippocampal circuit mechanisms underlying memory formation suggests a role for computational processes such as pattern separation and pattern completion in memory precision. We describe evidence implicating the dentate gyrus-CA3 circuit in pattern separation and completion, and examine alterations in dentate gyrus-CA3 circuit structure and function with aging. We discuss the role of adult hippocampal neurogenesis in memory precision in adulthood and aging, as well as the circuit mechanisms underlying the integration and encoding functions of adult-born dentate granule cells. We posit that understanding these circuit mechanisms will permit generation of circuit-based endophenotypes that will edify new therapeutic strategies to optimize hippocampal encoding during aging.

Keywords

Aging Neurogenesis Dentate gyrus Hippocampus Memory Pattern separation 

Notes

Acknowledgments

We thank members of the Sahay laboratory for their comments on the manuscript. A.S acknowledges grant support from US National Institutes of Health Biobehavioral Research Awards for Innovative New Scientists (BRAINS) 1-R01MH104175, NIH-NIA 1R01AG048908-01A1, 2017 NARSAD Independent Investigator Award, Ellison Medical Foundation New Scholar in Aging, Whitehall Foundation, Inscopix Decode award, Ellison Family Philanthropic support, and Harvard Neurodiscovery Center/MADRC Center Pilot Grant Award.

References

  1. 1.
    Hedden T, Gabrieli JD. Insights into the ageing mind: a view from cognitive neuroscience. Nat Rev Neurosci 2004;5(2):87-96.PubMedCrossRefGoogle Scholar
  2. 2.
    Salthouse TA. Shared and unique influences on age-related cognitive change. Neuropsychology 2017;31(1):11-19.PubMedCrossRefGoogle Scholar
  3. 3.
    Drag LL, Bieliauskas LA. Contemporary review 2009: cognitive aging. J Geriatr Psychiatry Neurol 2010;23(2):75-93.PubMedCrossRefGoogle Scholar
  4. 4.
    Blazer DG, Wallace RB. Cognitive aging: what every geriatric psychiatrist should know. Am J Geriatr Psychiatry 2016;24(9):776-781.PubMedCrossRefGoogle Scholar
  5. 5.
    Centers for Disease Control and Prevention (CDC). Self-reported increased confusion or memory loss and associated functional difficulties among adults aged ≥ 60 years - 21 States, 2011. MMWR Morb Mortal Wkly Rep 2013;62(18):347-350.Google Scholar
  6. 6.
    Yaffe K, Fiocco AJ, Lindquist K, et al. Predictors of maintaining cognitive function in older adults: the Health ABC study. Neurology 2009;72(23):2029-2035.PubMedPubMedCentralCrossRefGoogle Scholar
  7. 7.
    Holsinger T, Deveau J, Boustani M, Williams JW, Jr. Does this patient have dementia? JAMA 2007;297(21):2391-2404.PubMedCrossRefGoogle Scholar
  8. 8.
    Moyer VA. Screening for cognitive impairment in older adults: U.S. Preventive Services Task Force recommendation statement. Ann Intern Med 2014;160(11):791-797.PubMedCrossRefGoogle Scholar
  9. 9.
    Erickson CA, Barnes CA. The neurobiology of memory changes in normal aging. Exp Gerontol 2003;38(1-2):61-69.PubMedCrossRefGoogle Scholar
  10. 10.
    Stephan BC, Matthews FE, McKeith IG, et al. Early cognitive change in the general population: how do different definitions work? J Am Geriatr Soc 2007;55(10):1534-1540.PubMedCrossRefGoogle Scholar
  11. 11.
    Gallagher M, Colantuoni C, Eichenbaum H, et al. Individual differences in neurocognitive aging of the medial temporal lobe. Age (Dordr) 2006;28(3):221-233.CrossRefGoogle Scholar
  12. 12.
    Sperling R. Functional MRI studies of associative encoding in normal aging, mild cognitive impairment, and Alzheimer's disease. Ann N Y Acad Sci 2007;1097:146-155.Google Scholar
  13. 13.
    Burke SN, Ryan L, Barnes CA. Characterizing cognitive aging of recognition memory and related processes in animal models and in humans. Front Aging Neurosci 2012;4:15.PubMedPubMedCentralCrossRefGoogle Scholar
  14. 14.
    Leal SL, Yassa MA. Neurocognitive aging and the hippocampus across species. Trends Neurosci 2015;38(12):800-812.PubMedPubMedCentralCrossRefGoogle Scholar
  15. 15.
    Holden HM, Gilbert PE. Less efficient pattern separation may contribute to age-related spatial memory deficits. Front Aging Neurosci 2012;4:9.PubMedPubMedCentralCrossRefGoogle Scholar
  16. 16.
    Rapp PR, Rosenberg RA, Gallagher M. An evaluation of spatial information processing in aged rats. Behav Neurosci 1987;101(1):3-12.PubMedCrossRefGoogle Scholar
  17. 17.
    Gallagher M, Pelleymounter MA. Spatial learning deficits in old rats: a model for memory decline in the aged. Neurobiol Aging 1988;9(5-6):549-556.PubMedCrossRefGoogle Scholar
  18. 18.
    Gage FH, Dunnett SB, Bjorklund A. Age-related impairments in spatial memory are independent of those in sensorimotor skills. Neurobiol Aging 1989;10(4):347-352.PubMedCrossRefGoogle Scholar
  19. 19.
    Uttl B, Graf P. Episodic spatial memory in adulthood. Psychol Aging 1993;8(2):257-273.PubMedCrossRefGoogle Scholar
  20. 20.
    Parkin AJ, Ward J, Squires EJ, Furbear H, Clark A, Townshend J. Data-driven recognition memory: a new technique and some data on age differences. Psychonom Bull Rev 2001;8(4):812-819.Google Scholar
  21. 21.
    Henkel LA, Johnson MK, De Leonardis DM. Aging and source monitoring: cognitive processes and neuropsychological correlates. J Exp Psychol Gen 1998;127(3):251-268.PubMedCrossRefGoogle Scholar
  22. 22.
    Friedman D. Event-related brain potential investigations of memory and aging. Biol Psychol 2000;54(1-3):175-206.PubMedCrossRefGoogle Scholar
  23. 23.
    Toner CK, Pirogovsky E, Kirwan CB, Gilbert PE. Visual object pattern separation deficits in nondemented older adults. Learn Mem 2009;16(5):338-342.PubMedCrossRefGoogle Scholar
  24. 24.
    Yassa MA, Lacy JW, Stark SM, Albert MS, Gallagher M, Stark CE. Pattern separation deficits associated with increased hippocampal CA3 and dentate gyrus activity in nondemented older adults. Hippocampus 2011;21(9):968-979.PubMedGoogle Scholar
  25. 25.
    Yassa MA, Stark CE. Pattern separation in the hippocampus. Trends Neurosci 2011;34(10):515-525.PubMedPubMedCentralCrossRefGoogle Scholar
  26. 26.
    Wilson IA, Gallagher M, Eichenbaum H, Tanila H. Neurocognitive aging: prior memories hinder new hippocampal encoding. Trends Neurosci 2006;29(12):662-670.PubMedPubMedCentralCrossRefGoogle Scholar
  27. 27.
    O'Reilly RC, McClelland JL. Hippocampal conjunctive encoding, storage, and recall: avoiding a trade-off. Hippocampus 1994;4(6):661-682.PubMedCrossRefGoogle Scholar
  28. 28.
    Rolls ET, Kesner RP. A computational theory of hippocampal function, and empirical tests of the theory. Prog Neurobiol 2006;79(1):1-48.PubMedCrossRefGoogle Scholar
  29. 29.
    Treves A, Tashiro A, Witter MP, Moser EI. What is the mammalian dentate gyrus good for? Neuroscience 2008;154(4):1155-1172.PubMedCrossRefGoogle Scholar
  30. 30.
    Lee I, Yoganarasimha D, Rao G, Knierim JJ. Comparison of population coherence of place cells in hippocampal subfields CA1 and CA3. Nature 2004;430(6998):456-459.PubMedCrossRefGoogle Scholar
  31. 31.
    Vazdarjanova A, Guzowski JF. Differences in hippocampal neuronal population responses to modifications of an environmental context: evidence for distinct, yet complementary, functions of CA3 and CA1 ensembles. J Neurosci 2004;24(29):6489-6496.PubMedCrossRefGoogle Scholar
  32. 32.
    Leutgeb S, Leutgeb JK, Treves A, Moser MB, Moser EI. Distinct ensemble codes in hippocampal areas CA3 and CA1. Science 2004;305(5688):1295-1298.PubMedCrossRefGoogle Scholar
  33. 33.
    Leutgeb JK, Leutgeb S, Moser MB, Moser EI. Pattern separation in the dentate gyrus and CA3 of the hippocampus. Science 2007;315(5814):961-966.PubMedCrossRefGoogle Scholar
  34. 34.
    Guzowski JF, Knierim JJ, Moser EI. Ensemble dynamics of hippocampal regions CA3 and CA1. Neuron 2004;44(4):581-584.PubMedCrossRefGoogle Scholar
  35. 35.
    Knierim JJ, Neunuebel JP. Tracking the flow of hippocampal computation: Pattern separation, pattern completion, and attractor dynamics. Neurobiol Learn Mem 2016;129:38-49.PubMedCrossRefGoogle Scholar
  36. 36.
    Kesner RP, Rolls ET. A computational theory of hippocampal function, and tests of the theory: new developments. Neurosci Biobehav Rev 2015;48:92-147.PubMedCrossRefGoogle Scholar
  37. 37.
    Gilbert PE, Kesner RP. The role of the dorsal CA3 hippocampal subregion in spatial working memory and pattern separation. Behav Brain Res 2006;169(1):142-149.PubMedCrossRefGoogle Scholar
  38. 38.
    Gilbert PE, Kesner RP, Lee I. Dissociating hippocampal subregions: double dissociation between dentate gyrus and CA1. Hippocampus 2001;11(6):626-636.PubMedCrossRefGoogle Scholar
  39. 39.
    McHugh TJ, Jones MW, Quinn JJ, et al. Dentate gyrus NMDA receptors mediate rapid pattern separation in the hippocampal network. Science 2007;317(5834):94-99.PubMedCrossRefGoogle Scholar
  40. 40.
    Nakazawa K, Quirk MC, Chitwood RA, et al. Requirement for hippocampal CA3 NMDA receptors in associative memory recall. Science 2002;297(5579):211-218.PubMedPubMedCentralCrossRefGoogle Scholar
  41. 41.
    Marr D. Simple memory: a theory for archicortex. Philos Trans R Soc Lond B Biol Sci 1971;262(841):23-81.PubMedCrossRefGoogle Scholar
  42. 42.
    Hunsaker MR, Kesner RP. The operation of pattern separation and pattern completion processes associated with different attributes or domains of memory. Neurosci Biobehav Rev 2013;37(1):36-58.PubMedCrossRefGoogle Scholar
  43. 43.
    Guzman SJ, Schlogl A, Frotscher M, Jonas P. Synaptic mechanisms of pattern completion in the hippocampal CA3 network. Science 2016;353(6304):1117-1123.PubMedCrossRefGoogle Scholar
  44. 44.
    Neunuebel JP, Knierim JJ. CA3 retrieves coherent representations from degraded input: direct evidence for CA3 pattern completion and dentate gyrus pattern separation. Neuron 2014;81(2):416-427.PubMedPubMedCentralCrossRefGoogle Scholar
  45. 45.
    Deng W, Mayford M, Gage FH. Selection of distinct populations of dentate granule cells in response to inputs as a mechanism for pattern separation in mice. Elife 2013;2:e00312.PubMedPubMedCentralCrossRefGoogle Scholar
  46. 46.
    Neunuebel JP, Yoganarasimha D, Rao G, Knierim JJ. Conflicts between local and global spatial frameworks dissociate neural representations of the lateral and medial entorhinal cortex. J Neurosci 2013;33(22):9246-9258.PubMedPubMedCentralCrossRefGoogle Scholar
  47. 47.
    Neunuebel JP, Knierim JJ. Spatial firing correlates of physiologically distinct cell types of the rat dentate gyrus. J Neurosci 2012;32(11):3848-3858.PubMedPubMedCentralCrossRefGoogle Scholar
  48. 48.
    GoodSmith D, Chen X, Wang C, et al. Spatial representations of granule cells and mossy cells of the dentate gyrus. Neuron 2017;93(3):677-690.PubMedCrossRefGoogle Scholar
  49. 49.
    Danielson NB, Turi GF, Ladow M, et al. In vivo imaging of dentate gyrus mossy cells in behaving mice. Neuron 2017;93(3):552-9.PubMedCrossRefGoogle Scholar
  50. 50.
    Senzai Y, Buzsaki G. Physiological properties and behavioral correlates of hippocampal granule cells and mossy cells. Neuron 2017;93(3):691-704.PubMedCrossRefGoogle Scholar
  51. 51.
    Bakker A, Kirwan CB, Miller M, Stark CE. Pattern separation in the human hippocampal CA3 and dentate gyrus. Science 2008;319(5870):1640-1642.PubMedPubMedCentralCrossRefGoogle Scholar
  52. 52.
    Lacy JW, Yassa MA, Stark SM, Muftuler LT, Stark CE. Distinct pattern separation related transfer functions in human CA3/dentate and CA1 revealed using high-resolution fMRI and variable mnemonic similarity. Learn Mem 2011;18(1):15-18.PubMedPubMedCentralCrossRefGoogle Scholar
  53. 53.
    Berron D, Schutze H, Maass A, et al. Strong Evidence for Pattern Separation in Human Dentate Gyrus. J Neurosci 2016;36(29):7569-7579.PubMedCrossRefGoogle Scholar
  54. 54.
    Kyle CT, Stokes JD, Lieberman JS, Hassan AS, Ekstrom AD. Successful retrieval of competing spatial environments in humans involves hippocampal pattern separation mechanisms. Elife 2015;4.Google Scholar
  55. 55.
    Baker S, Vieweg P, Gao F, et al. The human dentate gyrus plays a necessary role in discriminating new memories. Curr Biol 2016;26(19):2629-2634.PubMedCrossRefGoogle Scholar
  56. 56.
    Gracian EI, Shelley LE, Morris AM, Gilbert PE. Age-related changes in place learning for adjacent and separate locations. Neurobiol Aging 2013;34(10):2304-2309.PubMedPubMedCentralCrossRefGoogle Scholar
  57. 57.
    Liu X, Ramirez S, Pang PT, et al. Optogenetic stimulation of a hippocampal engram activates fear memory recall. Nature 2012;484(7394):381-385.PubMedPubMedCentralCrossRefGoogle Scholar
  58. 58.
    Ramirez S, Liu X, Lin PA, et al. Creating a false memory in the hippocampus. Science 2013;341(6144):387-391.PubMedCrossRefGoogle Scholar
  59. 59.
    O'Keefe J, Dostrovsky J. The hippocampus as a spatial map. Preliminary evidence from unit activity in the freely-moving rat. Brain Res 1971;34(1):171-175.PubMedCrossRefGoogle Scholar
  60. 60.
    Wilson MA, McNaughton BL. Dynamics of the hippocampal ensemble code for space. Science 1993;261(5124):1055-1058.PubMedCrossRefGoogle Scholar
  61. 61.
    Rosenzweig ES, Barnes CA. Impact of aging on hippocampal function: plasticity, network dynamics, and cognition. Prog Neurobiol 2003;69(3):143-179.PubMedCrossRefGoogle Scholar
  62. 62.
    Barnes CA, Suster MS, Shen J, McNaughton BL. Multistability of cognitive maps in the hippocampus of old rats. Nature 1997;388(6639):272-275.PubMedCrossRefGoogle Scholar
  63. 63.
    Rosenzweig ES, Redish AD, McNaughton BL, Barnes CA. Hippocampal map realignment and spatial learning. Nat Neurosci 2003;6(6):609-615.PubMedCrossRefGoogle Scholar
  64. 64.
    Tanila H, Shapiro ML, Eichenbaum H. Discordance of spatial representation in ensembles of hippocampal place cells. Hippocampus 1997;7(6):613-623.PubMedCrossRefGoogle Scholar
  65. 65.
    Tanila H, Shapiro M, Gallagher M, Eichenbaum H. Brain aging: changes in the nature of information coding by the hippocampus. J Neurosci 1997;17(13):5155-5166.PubMedGoogle Scholar
  66. 66.
    Wilson IA, Ikonen S, McMahan RW, Gallagher M, Eichenbaum H, Tanila H. Place cell rigidity correlates with impaired spatial learning in aged rats. Neurobiol Aging 2003;24(2):297-305.PubMedCrossRefGoogle Scholar
  67. 67.
    Wilson IA, Ikonen S, Gallagher M, Eichenbaum H, Tanila H. Age-associated alterations of hippocampal place cells are subregion specific. J Neurosci 2005;25(29):6877-6886.PubMedCrossRefGoogle Scholar
  68. 68.
    Wilson IA, Ikonen S, Gureviciene I, et al. Cognitive aging and the hippocampus: how old rats represent new environments. J Neurosci 2004;24(15):3870-3878.PubMedCrossRefGoogle Scholar
  69. 69.
    Guzowski JF, McNaughton BL, Barnes CA, Worley PF. Environment-specific expression of the immediate-early gene Arc in hippocampal neuronal ensembles. Nat Neurosci 1999;2(12):1120-1124.PubMedCrossRefGoogle Scholar
  70. 70.
    Marrone DF, Adams AA, Satvat E. Increased pattern separation in the aged fascia dentata. Neurobiol Aging 2011;32(12):2317.PubMedCrossRefGoogle Scholar
  71. 71.
    Vieweg P, Stangl M, Howard LR, Wolbers T. Changes in pattern completion--a key mechanism to explain age-related recognition memory deficits? Cortex 2015;64:343-351.PubMedCrossRefGoogle Scholar
  72. 72.
    Yassa MA, Mattfeld AT, Stark SM, Stark CE. Age-related memory deficits linked to circuit-specific disruptions in the hippocampus. Proc Natl Acad Sci U S A 2011;108(21):8873-8878.PubMedPubMedCentralCrossRefGoogle Scholar
  73. 73.
    Bakker A, Krauss GL, Albert MS, et al. Reduction of hippocampal hyperactivity improves cognition in amnestic mild cognitive impairment. Neuron 2012;74(3):467-474.PubMedPubMedCentralCrossRefGoogle Scholar
  74. 74.
    West MJ, Coleman PD, Flood DG, Troncoso JC. Differences in the pattern of hippocampal neuronal loss in normal ageing and Alzheimer's disease. Lancet 1994;344(8925):769-772.PubMedCrossRefGoogle Scholar
  75. 75.
    Rapp PR, Gallagher M. Preserved neuron number in the hippocampus of aged rats with spatial learning deficits. Proc Natl Acad Sci U S A 1996;93(18):9926-9930.PubMedPubMedCentralCrossRefGoogle Scholar
  76. 76.
    Rasmussen T, Schliemann T, Sorensen JC, Zimmer J, West MJ. Memory impaired aged rats: no loss of principal hippocampal and subicular neurons. Neurobiol Aging 1996;17(1):143-147.PubMedCrossRefGoogle Scholar
  77. 77.
    Keuker JI, Luiten PG, Fuchs E. Preservation of hippocampal neuron numbers in aged rhesus monkeys. Neurobiol Aging 2003;24(1):157-165.PubMedCrossRefGoogle Scholar
  78. 78.
    Calhoun ME, Kurth D, Phinney AL, et al. Hippocampal neuron and synaptophysin-positive bouton number in aging C57BL/6 mice. Neurobiol Aging 1998;19(6):599-606.PubMedCrossRefGoogle Scholar
  79. 79.
    De Leon MJ, George AE, Golomb J, et al. Frequency of hippocampal formation atrophy in normal aging and Alzheimer's disease. Neurobiol Aging 1997;18(1):1-11.PubMedCrossRefGoogle Scholar
  80. 80.
    Raz N, Ghisletta P, Rodrigue KM, Kennedy KM, Lindenberger U. Trajectories of brain aging in middle-aged and older adults: regional and individual differences. Neuroimage 2010;51(2):501-511.PubMedPubMedCentralCrossRefGoogle Scholar
  81. 81.
    Raz N, Lindenberger U, Rodrigue KM, et al. Regional brain changes in aging healthy adults: general trends, individual differences and modifiers. Cereb Cortex 2005;15(11):1676-1689.PubMedCrossRefGoogle Scholar
  82. 82.
    Small SA, Schobel SA, Buxton RB, Witter MP, Barnes CA. A pathophysiological framework of hippocampal dysfunction in ageing and disease. Nat Rev Neurosci 2011;12(10):585-601.PubMedPubMedCentralCrossRefGoogle Scholar
  83. 83.
    Raz N, Gunning-Dixon FM, Head D, Dupuis JH, Acker JD. Neuroanatomical correlates of cognitive aging: evidence from structural magnetic resonance imaging. Neuropsychology 1998;12(1):95-114.PubMedCrossRefGoogle Scholar
  84. 84.
    Rosen AC, Prull MW, Gabrieli JD, et al. Differential associations between entorhinal and hippocampal volumes and memory performance in older adults. Behav Neurosci 2003;117(6):1150-1160.PubMedCrossRefGoogle Scholar
  85. 85.
    Small SA, Chawla MK, Buonocore M, Rapp PR, Barnes CA. Imaging correlates of brain function in monkeys and rats isolates a hippocampal subregion differentially vulnerable to aging. Proc Natl Acad Sci U S A 2004;101(18):7181-7186.PubMedPubMedCentralCrossRefGoogle Scholar
  86. 86.
    Geinisman Y, deToledo-Morrell L, Morrell F, Persina IS, Rossi M. Age-related loss of axospinous synapses formed by two afferent systems in the rat dentate gyrus as revealed by the unbiased stereological dissector technique. Hippocampus 1992;2(4):437-444.PubMedCrossRefGoogle Scholar
  87. 87.
    Geinisman Y, de Toledo-Morrell L, Morrell F. Loss of perforated synapses in the dentate gyrus: morphological substrate of memory deficit in aged rats. Proc Natl Acad Sci U S A 1986;83(9):3027-3031.PubMedPubMedCentralCrossRefGoogle Scholar
  88. 88.
    Morrison JH, Baxter MG. The ageing cortical synapse: hallmarks and implications for cognitive decline. Nat Rev Neurosci 2012;13(4):240-250.PubMedPubMedCentralGoogle Scholar
  89. 89.
    Barnes CA, McNaughton BL. Physiological compensation for loss of afferent synapses in rat hippocampal granule cells during senescence. J Physiol 1980;309:473-485.PubMedPubMedCentralCrossRefGoogle Scholar
  90. 90.
    Barnes CA. Memory deficits associated with senescence: a neurophysiological and behavioral study in the rat. J Comp Physiol Psychol 1979;93(1):74-104.PubMedCrossRefGoogle Scholar
  91. 91.
    Barnes CA. Normal aging: regionally specific changes in hippocampal synaptic transmission. Trends Neurosci 1994;17(1):13-18.PubMedCrossRefGoogle Scholar
  92. 92.
    Chawla MK, Barnes CA. Hippocampal granule cells in normal aging: insights from electrophysiological and functional imaging experiments. Prog Brain Res 2007;163:661-678.PubMedCrossRefGoogle Scholar
  93. 93.
    Chawla MK, Guzowski JF, Ramirez-Amaya V, et al. Sparse, environmentally selective expression of Arc RNA in the upper blade of the rodent fascia dentata by brief spatial experience. Hippocampus 2005;15(5):579-586.PubMedCrossRefGoogle Scholar
  94. 94.
    Rogalski E, Stebbins GT, Barnes CA, et al. Age-related changes in parahippocampal white matter integrity: a diffusion tensor imaging study. Neuropsychologia 2012;50(8):1759-1765.PubMedPubMedCentralCrossRefGoogle Scholar
  95. 95.
    Stoub TR, Barnes CA, Shah RC, Stebbins GT, Ferrari C, deToledo-Morrell L. Age-related changes in the mesial temporal lobe: the parahippocampal white matter region. Neurobiol Aging 2012;33(7):1168-1176.PubMedCrossRefGoogle Scholar
  96. 96.
    Yassa MA, Muftuler LT, Stark CE. Ultrahigh-resolution microstructural diffusion tensor imaging reveals perforant path degradation in aged humans in vivo. Proc Natl Acad Sci U S A 2010;107(28):12687-12691.PubMedPubMedCentralCrossRefGoogle Scholar
  97. 97.
    Simkin D, Hattori S, Ybarra N, et al. Aging-related hyperexcitability in CA3 Pyramidal neurons is mediated by enhanced a-type K+ channel function and expression. J Neurosci 2015;35(38):13206-13218.PubMedPubMedCentralCrossRefGoogle Scholar
  98. 98.
    Villanueva-Castillo C, Tecuatl C, Herrera-Lopez G, Galvan EJ. Aging-related impairments of hippocampal mossy fibers synapses on CA3 pyramidal cells. Neurobiol Aging 2017;49:119-137.PubMedCrossRefGoogle Scholar
  99. 99.
    Thome A, Gray DT, Erickson CA, Lipa P, Barnes CA. Memory impairment in aged primates is associated with region-specific network dysfunction. Mol Psychiatry 2016;21(9):1257-1262.PubMedCrossRefGoogle Scholar
  100. 100.
    Acsady L, Kamondi A, Sik A, Freund T, Buzsaki G. GABAergic cells are the major postsynaptic targets of mossy fibers in the rat hippocampus. J Neurosci 1998;18(9):3386-3403.PubMedGoogle Scholar
  101. 101.
    McBain CJ. Differential mechanisms of transmission and plasticity at mossy fiber synapses. Prog Brain Res 2008;169:225-240.PubMedPubMedCentralCrossRefGoogle Scholar
  102. 102.
    Galvan EJ, Cosgrove KE, Barrionuevo G. Multiple forms of long-term synaptic plasticity at hippocampal mossy fiber synapses on interneurons. Neuropharmacology 2011;60(5):740-747.PubMedCrossRefGoogle Scholar
  103. 103.
    Cadiacio CL, Milner TA, Gallagher M, Pierce JP. Hilar neuropeptide Y interneuron loss in the aged rat hippocampal formation. Exp Neurol 2003;183(1):147-158.PubMedCrossRefGoogle Scholar
  104. 104.
    Stanley DP, Shetty AK. Aging in the rat hippocampus is associated with widespread reductions in the number of glutamate decarboxylase-67 positive interneurons but not interneuron degeneration. J Neurochem 2004;89(1):204-216.PubMedCrossRefGoogle Scholar
  105. 105.
    Vela J, Gutierrez A, Vitorica J, Ruano D. Rat hippocampal GABAergic molecular markers are differentially affected by ageing. J Neurochem 2003;85(2):368-377.PubMedCrossRefGoogle Scholar
  106. 106.
    Altman J, Das GD. Autoradiographic and histological evidence of postnatal hippocampal neurogenesis in rats. J Comp Neurol 1965;124(3):319-335.PubMedCrossRefGoogle Scholar
  107. 107.
    Eriksson PS, Perfilieva E, Bjork-Eriksson T, et al. Neurogenesis in the adult human hippocampus. Nat Med 1998;4(11):1313-1317.PubMedCrossRefGoogle Scholar
  108. 108.
    Boldrini M, Hen R, Underwood MD, et al. Hippocampal angiogenesis and progenitor cell proliferation are increased with antidepressant use in major depression. Biol Psychiatry 2012;72(7):562-571.PubMedPubMedCentralCrossRefGoogle Scholar
  109. 109.
    Boldrini M, Underwood MD, Hen R, et al. Antidepressants increase neural progenitor cells in the human hippocampus. Neuropsychopharmacology 2009;34(11):2376-2389.PubMedPubMedCentralCrossRefGoogle Scholar
  110. 110.
    Knoth R, Singec I, Ditter M, et al. Murine features of neurogenesis in the human hippocampus across the lifespan from 0 to 100 years. PLOS ONE 2010;5(1):e8809.Google Scholar
  111. 111.
    Spalding KL, Bergmann O, Alkass K, et al. Dynamics of hippocampal neurogenesis in adult humans. Cell 2013;153(6):1219-1227.PubMedPubMedCentralCrossRefGoogle Scholar
  112. 112.
    Ming GL, Song H. Adult neurogenesis in the mammalian brain: significant answers and significant questions. Neuron 2011;70(4):687-702.PubMedPubMedCentralCrossRefGoogle Scholar
  113. 113.
    Bergami M, Berninger B. A fight for survival: the challenges faced by a newborn neuron integrating in the adult hippocampus. Dev Neurobiol 2012;72(7):1016-1031.PubMedCrossRefGoogle Scholar
  114. 114.
    Toni N, Schinder AF. Maturation and functional integration of new granule cells into the adult hippocampus. Cold Spring Harb Perspect Biol 2015;8(1):a018903.PubMedCrossRefGoogle Scholar
  115. 115.
    Deshpande A, Bergami M, Ghanem A, et al. Retrograde monosynaptic tracing reveals the temporal evolution of inputs onto new neurons in the adult dentate gyrus and olfactory bulb. Proc Natl Acad Sci U S A 2013;110(12):E1152-E1161.PubMedPubMedCentralCrossRefGoogle Scholar
  116. 116.
    Bergami M, Masserdotti G, Temprana SG, et al. A critical period for experience-dependent remodeling of adult-born neuron connectivity. Neuron 2015;85(4):710-717.PubMedCrossRefGoogle Scholar
  117. 117.
    Vivar C, Potter MC, Choi J, et al. Monosynaptic inputs to new neurons in the dentate gyrus. Nat Commun 2012;3:1107.PubMedPubMedCentralCrossRefGoogle Scholar
  118. 118.
    McAvoy KM, Scobie KN, Berger S, et al. Modulating neuronal competition dynamics in the dentate gyrus to rejuvenate aging memory circuits. Neuron 2016;91(6):1356-1373.PubMedCrossRefGoogle Scholar
  119. 119.
    Krzisch M, Fulling C, Jabinet L, et al. Synaptic adhesion molecules regulate the integration of new granule neurons in the postnatal mouse hippocampus and their impact on spatial memory. Cereb Cortex 2016 Jul 29 [Epub ahead of print].Google Scholar
  120. 120.
    Sultan S, Li L, Moss J, et al. Synaptic integration of adult-born hippocampal neurons is locally controlled by astrocytes. Neuron 2015;88(5):957-972.PubMedCrossRefGoogle Scholar
  121. 121.
    Tashiro A, Sandler VM, Toni N, Zhao C, Gage FH. NMDA-receptor-mediated, cell-specific integration of new neurons in adult dentate gyrus. Nature 2006;442(7105):929-933.PubMedCrossRefGoogle Scholar
  122. 122.
    Doengi M, Krupp AJ, Korber N, Stein V. SynCAM 1 improves survival of adult-born neurons by accelerating synapse maturation. Hippocampus 2016;26(3):319-328.PubMedCrossRefGoogle Scholar
  123. 123.
    Denny CA, Burghardt NS, Schachter DM, Hen R, Drew MR. 4-6 week old adult-born hippocampal neurons influence novelty-evoked exploration and contextual fear conditioning. Hippocampus 2012;22:1188-1201.PubMedCrossRefGoogle Scholar
  124. 124.
    Ge S, Yang CH, Hsu KS, Ming GL, Song H. A critical period for enhanced synaptic plasticity in newly generated neurons of the adult brain. Neuron 2007;54(4):559-566.PubMedPubMedCentralCrossRefGoogle Scholar
  125. 125.
    Marin-Burgin A, Mongiat LA, Pardi MB, Schinder AF. Unique processing during a period of high excitation/inhibition balance in adult-born neurons. Science 2012;335(6073):1238-1242.PubMedPubMedCentralCrossRefGoogle Scholar
  126. 126.
    Gu Y, Arruda-Carvalho M, Wang J, et al. Optical controlling reveals time-dependent roles for adult-born dentate granule cells. Nat Neurosci 2012;15(12):1700-1706.PubMedPubMedCentralCrossRefGoogle Scholar
  127. 127.
    Toni N, Laplagne DA, Zhao C, et al. Neurons born in the adult dentate gyrus form functional synapses with target cells. Nat Neurosci 2008;11(8):901-907.PubMedPubMedCentralCrossRefGoogle Scholar
  128. 128.
    Toni N, Teng EM, Bushong EA, et al. Synapse formation on neurons born in the adult hippocampus. Nat Neurosci 2007;10(6):727-734.PubMedCrossRefGoogle Scholar
  129. 129.
    Schmidt-Hieber C, Jonas P, Bischofberger J. Enhanced synaptic plasticity in newly generated granule cells of the adult hippocampus. Nature 2004;429(6988):184-187.PubMedCrossRefGoogle Scholar
  130. 130.
    Saxe MD, Battaglia F, Wang JW, et al. Ablation of hippocampal neurogenesis impairs contextual fear conditioning and synaptic plasticity in the dentate gyrus. Proc Natl Acad Sci U S A 2006;103(46):17501-17506.PubMedPubMedCentralCrossRefGoogle Scholar
  131. 131.
    Snyder JS, Kee N, Wojtowicz JM. Effects of adult neurogenesis on synaptic plasticity in the rat dentate gyrus. J Neurophysiol 2001;85(6):2423-2431.PubMedGoogle Scholar
  132. 132.
    Zhuo JM, Tseng HA, Desai M, et al. Young adult born neurons enhance hippocampal dependent performance via influences on bilateral networks. eLife 2016;5.Google Scholar
  133. 133.
    Kempermann G. Activity dependency and aging in the regulation of adult neurogenesis. Cold Spring Harb Perspect Biol 2015;7(11).Google Scholar
  134. 134.
    Ben Abdallah NM, Slomianka L, Vyssotski AL, Lipp HP. Early age-related changes in adult hippocampal neurogenesis in C57 mice. Neurobiol Aging 2010;31(1):151-161.PubMedCrossRefGoogle Scholar
  135. 135.
    Artegiani B, Calegari F. Age-related cognitive decline: can neural stem cells help us? Aging 2012;4(3):176-186.PubMedPubMedCentralCrossRefGoogle Scholar
  136. 136.
    Encinas JM, Sierra A, Valcarcel-Martin R, Martin-Suarez S. A developmental perspective on adult hippocampal neurogenesis. Int J Dev Neurosci 2013;31(7):640-645.PubMedCrossRefGoogle Scholar
  137. 137.
    Bizon JL, Gallagher M. Production of new cells in the rat dentate gyrus over the lifespan: relation to cognitive decline. Eur J Neurosci 2003;18(1):215-219.PubMedCrossRefGoogle Scholar
  138. 138.
    Clelland CD, Choi M, Romberg C, et al. A functional role for adult hippocampal neurogenesis in spatial pattern separation. Science 2009;325(5937):210-213.PubMedPubMedCentralCrossRefGoogle Scholar
  139. 139.
    Nakashiba T, Cushman JD, Pelkey KA, et al. Young dentate granule cells mediate pattern separation, whereas old granule cells facilitate pattern completion. Cell 2012;149(1):188-201.PubMedPubMedCentralCrossRefGoogle Scholar
  140. 140.
    Kheirbek MA, Klemenhagen KC, Sahay A, Hen R. Neurogenesis and generalization: a new approach to stratify and treat anxiety disorders. Nat Neurosci 2012;15(12):1613-1620.PubMedPubMedCentralCrossRefGoogle Scholar
  141. 141.
    Sahay A, Scobie KN, Hill AS, et al. Increasing adult hippocampal neurogenesis is sufficient to improve pattern separation. Nature 2011;472(7344):466-470.PubMedPubMedCentralCrossRefGoogle Scholar
  142. 142.
    Tronel S, Belnoue L, Grosjean N, et al. Adult-born neurons are necessary for extended contextual discrimination. Hippocampus 2012;22(2):292-298.PubMedCrossRefGoogle Scholar
  143. 143.
    Wojtowicz JM, Askew ML, Winocur G. The effects of running and of inhibiting adult neurogenesis on learning and memory in rats. Eur J Neurosci 2008;27(6):1494-1502.PubMedCrossRefGoogle Scholar
  144. 144.
    Garthe A, Behr J, Kempermann G. Adult-generated hippocampal neurons allow the flexible use of spatially precise learning strategies. PLOS ONE 2009;4(5):e5464.Google Scholar
  145. 145.
    Burghardt NS, Park EH, Hen R, Fenton AA. Adult-born hippocampal neurons promote cognitive flexibility in mice. Hippocampus 2012;22(9):1795-1808.PubMedPubMedCentralCrossRefGoogle Scholar
  146. 146.
    Niibori Y, Yu TS, Epp JR, Akers KG, Josselyn SA, Frankland PW. Suppression of adult neurogenesis impairs population coding of similar contexts in hippocampal CA3 region. Nat Commun 2012;3:1253.PubMedPubMedCentralCrossRefGoogle Scholar
  147. 147.
    Besnard A, Sahay A. Adult hippocampal neurogenesis, fear generalization, and stress. Neuropsychopharmacology 2016;41(1):24-44.PubMedCrossRefGoogle Scholar
  148. 148.
    Kheirbek MA, Tannenholz L, Hen R. NR2B-dependent plasticity of adult-born granule cells is necessary for context discrimination. J Neurosci 2012;32(25):8696-8702.PubMedPubMedCentralCrossRefGoogle Scholar
  149. 149.
    Danielson NB, Kaifosh P, Zaremba JD, et al. Distinct contribution of adult-born hippocampal granule cells to context encoding. Neuron 2016;90(1):101-112.PubMedPubMedCentralCrossRefGoogle Scholar
  150. 150.
    Creer DJ, Romberg C, Saksida LM, van Praag H, Bussey TJ. Running enhances spatial pattern separation in mice. Proc Natl Acad Sci U S A 2010;107(5):2367-2372.PubMedPubMedCentralCrossRefGoogle Scholar
  151. 151.
    Sahay A, Wilson DA, Hen R. Pattern separation: a common function for new neurons in hippocampus and olfactory bulb. Neuron 2011;70(4):582-588.PubMedPubMedCentralCrossRefGoogle Scholar
  152. 152.
    Ikrar T, Guo N, He K, et al. Adult neurogenesis modifies excitability of the dentate gyrus. Front Neural Circuits 2013;7:204.PubMedPubMedCentralCrossRefGoogle Scholar
  153. 153.
    McAvoy K, Besnard A, Sahay A. Adult hippocampal neurogenesis and pattern separation in DG: a role for feedback inhibition in modulating sparseness to govern population-based coding. Front Syst Neurosci 2015;9:120.PubMedPubMedCentralCrossRefGoogle Scholar
  154. 154.
    Poo MM, Pignatelli M, Ryan TJ, et al. What is memory? The present state of the engram. BMC Biol 2016;14:40.PubMedPubMedCentralCrossRefGoogle Scholar
  155. 155.
    Drew LJ, Kheirbek MA, Luna VM, et al. Activation of local inhibitory circuits in the dentate gyrus by adult-born neurons. Hippocampus 2016;26(6):763-778.PubMedPubMedCentralCrossRefGoogle Scholar
  156. 156.
    Besnard A, Sahay A. Adult hippocampal neurogenesis, fear generalization, and stress. Neuropsychopharmacology 2016;41:24-44.PubMedCrossRefGoogle Scholar
  157. 157.
    Stefanelli T, Bertollini C, Luscher C, Muller D, Mendez P. Hippocampal somatostatin interneurons control the size of neuronal memory ensembles. Neuron 2016;89(5):1074-1085.PubMedCrossRefGoogle Scholar
  158. 158.
    Lacefield CO, Itskov V, Reardon T, Hen R, Gordon JA. Effects of adult-generated granule cells on coordinated network activity in the dentate gyrus. Hippocampus 2012;22(1):106-116.PubMedCrossRefGoogle Scholar
  159. 159.
    Temprana SG, Mongiat LA, Yang SM, et al. Delayed coupling to feedback inhibition during a critical period for the integration of adult-born granule cells. Neuron 2015;85(1):116-130.PubMedCrossRefGoogle Scholar
  160. 160.
    Restivo L, Niibori Y, Mercaldo V, Josselyn SA, Frankland PW. Development of adult-generated cell connectivity with excitatory and inhibitory cell populations in the hippocampus. J Neurosci 2015;35(29):10600-10612.PubMedCrossRefGoogle Scholar
  161. 161.
    Adlaf EW, Vaden RJ, Niver AJ, et al. Adult-born neurons modify excitatory synaptic transmission to existing neurons. Elife 2017;6.Google Scholar
  162. 162.
    Park EH, Burghardt NS, Dvorak D, Hen R, Fenton AA. Experience-dependent regulation of dentate gyrus excitability by adult-born granule cells. J Neurosci 2015;35(33):11656-11666.PubMedPubMedCentralCrossRefGoogle Scholar
  163. 163.
    Ruediger S, Spirig D, Donato F, Caroni P. Goal-oriented searching mediated by ventral hippocampus early in trial-and-error learning. Nat Neurosci 2012;15(11):1563-1571.PubMedCrossRefGoogle Scholar
  164. 164.
    Ruediger S, Vittori C, Bednarek E, et al. Learning-related feedforward inhibitory connectivity growth required for memory precision. Nature 2011;473:514-518.PubMedCrossRefGoogle Scholar
  165. 165.
    Denny CA, Kheirbek MA, Alba EL, et al. Hippocampal memory traces are differentially modulated by experience, time, and adult neurogenesis. Neuron 2014;83(1):189-201.PubMedPubMedCentralCrossRefGoogle Scholar
  166. 166.
    Deng W, Saxe MD, Gallina IS, Gage FH. Adult-born hippocampal dentate granule cells undergoing maturation modulate learning and memory in the brain. J Neurosci 2009;29(43):13532-13542.PubMedPubMedCentralCrossRefGoogle Scholar
  167. 167.
    Snyder JS, Hong NS, McDonald RJ, Wojtowicz JM. A role for adult neurogenesis in spatial long-term memory. Neuroscience 2005;130(4):843-852.PubMedCrossRefGoogle Scholar
  168. 168.
    Goodman T, Trouche S, Massou I, et al. Young hippocampal neurons are critical for recent and remote spatial memory in adult mice. Neuroscience 2010;171(3):769-778.PubMedCrossRefGoogle Scholar
  169. 169.
    Pan YW, Storm DR, Xia Z. The maintenance of established remote contextual fear memory requires ERK5 MAP kinase and ongoing adult neurogenesis in the hippocampus. PLOS ONE 2012;7(11):e50455.Google Scholar
  170. 170.
    Wang W, Pan YW, Zou J, et al. Genetic activation of ERK5 MAP kinase enhances adult neurogenesis and extends hippocampus-dependent long-term memory. J Neurosci 2014;34(6):2130-2147.PubMedPubMedCentralCrossRefGoogle Scholar
  171. 171.
    Seib DR, Corsini NS, Ellwanger K, et al. Loss of Dickkopf-1 restores neurogenesis in old age and counteracts cognitive decline. Cell Stem Cell 2013;12(2):204-214.PubMedCrossRefGoogle Scholar
  172. 172.
    Smith LK, He Y, Park JS, et al. beta2-microglobulin is a systemic pro-aging factor that impairs cognitive function and neurogenesis. Nat Med 2015;21(8):932-937.PubMedPubMedCentralCrossRefGoogle Scholar
  173. 173.
    Gibbons TE, Pence BD, Petr G, et al. Voluntary wheel running, but not a diet containing (-)-epigallocatechin-3-gallate and beta-alanine, improves learning, memory and hippocampal neurogenesis in aged mice. Behav Brain Res 2014;272:131-140.PubMedPubMedCentralCrossRefGoogle Scholar
  174. 174.
    Villeda SA, Luo J, Mosher KI, et al. The ageing systemic milieu negatively regulates neurogenesis and cognitive function. Nature 2011;477(7362):90-94.PubMedPubMedCentralCrossRefGoogle Scholar
  175. 175.
    van Praag H, Shubert T, Zhao C, Gage FH. Exercise enhances learning and hippocampal neurogenesis in aged mice. J Neurosci 2005;25(38):8680-8685.PubMedPubMedCentralCrossRefGoogle Scholar
  176. 176.
    Wu MV, Luna VM, Hen R. Running rescues a fear-based contextual discrimination deficit in aged mice. Front Syst Neurosci 2015;9:114.PubMedPubMedCentralGoogle Scholar
  177. 177.
    Pardo J, Uriarte M, Console GM, et al. Insulin-like growth factor-I gene therapy increases hippocampal neurogenesis, astrocyte branching and improves spatial memory in female aging rats. Eur J Neurosci 2016;44(4):2120-2128.PubMedCrossRefGoogle Scholar
  178. 178.
    Bouchard J, Villeda SA. Aging and brain rejuvenation as systemic events. J Neurochem 2015;132(1):5-19.PubMedCrossRefGoogle Scholar
  179. 179.
    Drapeau E, Mayo W, Aurousseau C, Le Moal M, Piazza PV, Abrous DN. Spatial memory performances of aged rats in the water maze predict levels of hippocampal neurogenesis. Proc Natl Acad Sci U S A 2003;100(24):14385-14390.PubMedPubMedCentralCrossRefGoogle Scholar
  180. 180.
    Merrill DA, Karim R, Darraq M, Chiba AA, Tuszynski MH. Hippocampal cell genesis does not correlate with spatial learning ability in aged rats. J Comp Neurol 2003;459(2):201-207.PubMedCrossRefGoogle Scholar
  181. 181.
    Alvarez DD, Giacomini D, Yang SM, et al. A disynaptic feedback network activated by experience promotes the integration of new granule cells. Science 2016;354(6311):459-465.PubMedCrossRefGoogle Scholar
  182. 182.
    Scobie KN, Hall BJ, Wilke SA, et al. Kruppel-like factor 9 is necessary for late-phase neuronal maturation in the developing dentate gyrus and during adult hippocampal neurogenesis. J Neurosci 2009;29(31):9875-9887.PubMedPubMedCentralCrossRefGoogle Scholar
  183. 183.
    Akers KG, Martinez-Canabal A, Restivo L, et al. Hippocampal neurogenesis regulates forgetting during adulthood and infancy. Science 2014;344(6184):598-602.PubMedCrossRefGoogle Scholar
  184. 184.
    Bonaguidi MA, Wheeler MA, Shapiro JS, et al. In vivo clonal analysis reveals self-renewing and multipotent adult neural stem cell characteristics. Cell 2011;145(7):1142-1155.PubMedPubMedCentralCrossRefGoogle Scholar
  185. 185.
    Yang TT, Lo CP, Tsai PS, et al. Aging and exercise affect hippocampal neurogenesis via different mechanisms. PLOS ONE 2015;10(7):e0132152.Google Scholar
  186. 186.
    Lugert S, Basak O, Knuckles P, et al. Quiescent and active hippocampal neural stem cells with distinct morphologies respond selectively to physiological and pathological stimuli and aging. Cell Stem Cell 2010;6(5):445-456.PubMedCrossRefGoogle Scholar
  187. 187.
    Rao MS, Hattiangady B, Shetty AK. The window and mechanisms of major age-related decline in the production of new neurons within the dentate gyrus of the hippocampus. Aging Cell 2006;5(6):545-558.PubMedCrossRefGoogle Scholar
  188. 188.
    Katsimpardi L, Litterman NK, Schein PA, et al. Vascular and neurogenic rejuvenation of the aging mouse brain by young systemic factors. Science 2014;344(6184):630-634.PubMedPubMedCentralCrossRefGoogle Scholar
  189. 189.
    Villeda SA, Plambeck KE, Middeldorp J, et al. Young blood reverses age-related impairments in cognitive function and synaptic plasticity in mice. Nat Med 2014;20(6):659-663.PubMedPubMedCentralCrossRefGoogle Scholar
  190. 190.
    Cornejo F, von Bernhardi R. Age-Dependent changes in the activation and regulation of microglia. Adv Exp Med Biol 2016;949:205-226.PubMedCrossRefGoogle Scholar
  191. 191.
    Gebara E, Sultan S, Kocher-Braissant J, Toni N. Adult hippocampal neurogenesis inversely correlates with microglia in conditions of voluntary running and aging. Front Neurosci 2013;7:145.PubMedPubMedCentralCrossRefGoogle Scholar
  192. 192.
    Monje ML, Toda H, Palmer TD. Inflammatory blockade restores adult hippocampal neurogenesis. Science 2003;302(5651):1760-1765.PubMedCrossRefGoogle Scholar
  193. 193.
    Kohman RA, Bhattacharya TK, Kilby C, Bucko P, Rhodes JS. Effects of minocycline on spatial learning, hippocampal neurogenesis and microglia in aged and adult mice. Behav Brain Res 2013;242:17-24.PubMedCrossRefGoogle Scholar
  194. 194.
    Su P, Zhang J, Zhao F, Aschner M, Chen J, Luo W. The interaction between microglia and neural stem/precursor cells. Brain Res Bull 2014;109:32-38.PubMedCrossRefGoogle Scholar
  195. 195.
    Cameron HA, McKay RD. Restoring production of hippocampal neurons in old age. Nat Neurosci 1999;2(10):894-897.PubMedCrossRefGoogle Scholar
  196. 196.
    Heine VM, Maslam S, Joels M, Lucassen PJ. Prominent decline of newborn cell proliferation, differentiation, and apoptosis in the aging dentate gyrus, in absence of an age-related hypothalamus-pituitary-adrenal axis activation. Neurobiol Aging 2004;25(3):361-375.PubMedCrossRefGoogle Scholar
  197. 197.
    Garcia A, Steiner B, Kronenberg G, Bick-Sander A, Kempermann G. Age-dependent expression of glucocorticoid- and mineralocorticoid receptors on neural precursor cell populations in the adult murine hippocampus. Aging Cell 2004;3(6):363-371.PubMedCrossRefGoogle Scholar
  198. 198.
    Mayer JL, Klumpers L, Maslam S, de Kloet ER, Joels M, Lucassen PJ. Brief treatment with the glucocorticoid receptor antagonist mifepristone normalises the corticosterone-induced reduction of adult hippocampal neurogenesis. J Neuroendocrinol 2006;18(8):629-631.PubMedCrossRefGoogle Scholar
  199. 199.
    Montaron MF, Drapeau E, Dupret D, et al. Lifelong corticosterone level determines age-related decline in neurogenesis and memory. Neurobiol Aging 2006;27(4):645-654.PubMedCrossRefGoogle Scholar
  200. 200.
    Stone SS, Teixeira CM, Devito LM, et al. Stimulation of entorhinal cortex promotes adult neurogenesis and facilitates spatial memory. J Neurosci 2011;31(38):13469-13484.PubMedCrossRefGoogle Scholar
  201. 201.
    Suthana N, Haneef Z, Stern J, et al. Memory enhancement and deep-brain stimulation of the entorhinal area. N Engl J Med 2012;366(6):502-510.PubMedPubMedCentralCrossRefGoogle Scholar
  202. 202.
    Jacobs J, Miller J, Lee SA, et al. Direct electrical stimulation of the human entorhinal region and hippocampus impairs memory. Neuron 2016;92(5):983-990.PubMedCrossRefGoogle Scholar
  203. 203.
    Wang J, Gallagher D, DeVito LM, et al. Metformin activates an atypical PKC-CBP pathway to promote neurogenesis and enhance spatial memory formation. Cell Stem Cell 2012;11(1):23-35.PubMedCrossRefGoogle Scholar
  204. 204.
    Fatt M, Hsu K, He L, et al. Metformin acts on two different molecular pathways to enhance adult neural precursor proliferation/self-renewal and differentiation. Stem Cell Rep 2015;5(6):988-995.CrossRefGoogle Scholar
  205. 205.
    Ishikawa R, Kim R, Namba T, Kohsaka S, Uchino S, Kida S. Time-dependent enhancement of hippocampus-dependent memory after treatment with memantine: Implications for enhanced hippocampal adult neurogenesis. Hippocampus 2014;24(7):784-793.PubMedCrossRefGoogle Scholar
  206. 206.
    Koch HJ, Uyanik G, Fischer-Barnicol D. Memantine: a therapeutic approach in treating Alzheimer's and vascular dementia. Curr Drug Targets CNS Neurol Disord 2005;4(5):499-506.PubMedCrossRefGoogle Scholar
  207. 207.
    Pieper AA, Xie S, Capota E, et al. Discovery of a proneurogenic, neuroprotective chemical. Cell 2010;142(1):39-51.PubMedPubMedCentralCrossRefGoogle Scholar
  208. 208.
    de Miranda AS, Zhang CJ, Katsumoto A, Teixeira AL. Hippocampal adult neurogenesis: Does the immune system matter? J Neurol Sci 2017;372:482-495.PubMedCrossRefGoogle Scholar
  209. 209.
    De Nicola AF, Pietranera L, Beauquis J, Ferrini MG, Saravia FE. Steroid protection in aging and age-associated diseases. Exp Gerontol 2009;44(1-2):34-40.PubMedCrossRefGoogle Scholar
  210. 210.
    Kronenberg G, Bick-Sander A, Bunk E, Wolf C, Ehninger D, Kempermann G. Physical exercise prevents age-related decline in precursor cell activity in the mouse dentate gyrus. Neurobiol Aging 2006;27(10):1505-1513.PubMedCrossRefGoogle Scholar
  211. 211.
    Vivar C, Potter MC, van Praag H. All about running: synaptic plasticity, growth factors and adult hippocampal neurogenesis. Curr Top Behav Neurosci 2013;15:189-210.PubMedPubMedCentralCrossRefGoogle Scholar
  212. 212.
    Voss MW, Vivar C, Kramer AF, van Praag H. Bridging animal and human models of exercise-induced brain plasticity. Trends Cogn Sci 2013;17(10):525-544.PubMedPubMedCentralCrossRefGoogle Scholar
  213. 213.
    Larson EB, Wang L, Bowen JD, et al. Exercise is associated with reduced risk for incident dementia among persons 65 years of age and older. Ann Intern Med 2006;144(2):73-81.PubMedCrossRefGoogle Scholar
  214. 214.
    Lautenschlager NT, Cox KL, Flicker L, et al. Effect of physical activity on cognitive function in older adults at risk for Alzheimer disease: a randomized trial. JAMA 2008;300(9):1027-1037.PubMedCrossRefGoogle Scholar
  215. 215.
    Yau SY, Gil-Mohapel J, Christie BR, So KF. Physical exercise-induced adult neurogenesis: a good strategy to prevent cognitive decline in neurodegenerative diseases? Biomed Res Int 2014;2014:403120.PubMedPubMedCentralCrossRefGoogle Scholar
  216. 216.
    Agudelo LZ, Femenia T, Orhan F, et al. Skeletal muscle PGC-1alpha1 modulates kynurenine metabolism and mediates resilience to stress-induced depression. Cell 2014;159(1):33-45.PubMedCrossRefGoogle Scholar
  217. 217.
    Moon HY, Becke A, Berron D, et al. Running-induced systemic cathepsin B secretion is associated with memory function. Cell Metab 2016;24(2):332-340.PubMedCrossRefGoogle Scholar
  218. 218.
    Manganas LN, Zhang X, Li Y, et al. Magnetic resonance spectroscopy identifies neural progenitor cells in the live human brain. Science 2007;318(5852):980-985.PubMedPubMedCentralCrossRefGoogle Scholar
  219. 219.
    Friedman SD. Comment on "Magnetic resonance spectroscopy identifies neural progenitor cells in the live human brain". Science 2008;321(5889):640.PubMedPubMedCentralCrossRefGoogle Scholar
  220. 220.
    Hoch JC, Maciejewski MW, Gryk MR. Comment on "magnetic resonance spectroscopy identifies neural progenitor cells in the live human brain". Science 2008;321(5889):640.PubMedPubMedCentralCrossRefGoogle Scholar
  221. 221.
    Jansen JF, Gearhart JD, Bulte JW. Comment on "Magnetic resonance spectroscopy identifies neural progenitor cells in the live human brain". Science 2008;321(5889):640.PubMedCrossRefGoogle Scholar
  222. 222.
    Pereira AC, Huddleston DE, Brickman AM, et al. An in vivo correlate of exercise-induced neurogenesis in the adult dentate gyrus. Proc Natl Acad Sci U S A 2007;104(13):5638-5643.PubMedPubMedCentralCrossRefGoogle Scholar
  223. 223.
    Ho NF, Hooker JM, Sahay A, Holt DJ, Roffman JL. In vivo imaging of adult human hippocampal neurogenesis: progress, pitfalls and promise. Mol Psychiatry 2013;18(4):404-416.PubMedPubMedCentralCrossRefGoogle Scholar
  224. 224.
    Mertens J, Paquola AC, Ku M, et al. Directly reprogrammed human neurons retain aging-associated transcriptomic signatures and reveal age-related nucleocytoplasmic defects. Cell Stem Cell 2015;17(6):705-718.PubMedCrossRefGoogle Scholar
  225. 225.
    Huh CJ, Zhang B, Victor MB, et al. Maintenance of age in human neurons generated by microRNA-based neuronal conversion of fibroblasts. Elife 2016;5.Google Scholar
  226. 226.
    Colasante G, Lignani G, Rubio A, et al. Rapid conversion of fibroblasts into functional forebrain GABAergic interneurons by direct genetic reprogramming. Cell Stem Cell 2015;17(6):719-734.PubMedCrossRefGoogle Scholar
  227. 227.
    Sun AX, Yuan Q, Tan S, et al. Direct induction and functional maturation of forebrain GABAergic neurons from human pluripotent stem cells. Cell Rep 2016;16(7):1942-1953.PubMedCrossRefGoogle Scholar
  228. 228.
    Yu DX, Di Giorgio FP, Yao J, et al. Modeling hippocampal neurogenesis using human pluripotent stem cells. Stem Cell Rep 2014;2(3):295-310.CrossRefGoogle Scholar
  229. 229.
    Clevers H. Modeling development and disease with organoids. Cell 2016;165(7):1586-1597.PubMedCrossRefGoogle Scholar

Copyright information

© The American Society for Experimental NeuroTherapeutics, Inc. 2017

Authors and Affiliations

  1. 1.Center for Regenerative MedicineMassachusetts General HospitalBostonUSA
  2. 2.Harvard Stem Cell InstituteCambridgeUSA
  3. 3.Department of PsychiatryMassachusetts General Hospital, Harvard Medical SchoolBostonUSA
  4. 4.BROAD Institute of Harvard and MITCambridgeUSA

Personalised recommendations