, Volume 14, Issue 3, pp 614–622

Emerging Treatments in Eating Disorders



Eating disorders (EDs), including anorexia nervosa, bulimia nervosa, and binge-eating disorder, constitute a class of common and deadly psychiatric disorders. While numerous studies in humans highlight the important role of neurobiological alterations in the development of ED-related behaviors, the precise neural substrate that mediates this risk is unknown. Historically, pharmacological interventions have played a limited role in the treatment of eating disorders, typically providing symptomatic relief of comorbid psychiatric issues, like depression and anxiety, in support of the standard nutritional and psychological treatments. To date there are no Food and Drug Administration-approved medications or procedures for anorexia nervosa, and only one Food and Drug Administration-approved medication each for bulimia nervosa (fluoxetine) and binge-eating disorder (lisdexamfetamine). While there is little primary interest in drug development for eating disorders, postmarket monitoring of medications and procedures approved for other indications has identified several novel treatment options for patients with eating disorders. In this review, I utilize searches of the PubMed and databases to highlight emerging treatments in eating disorders.


Anorexia nervosa Bulimia nervosa Binge-eating disorder Treatment 

Supplementary material

13311_2017_535_MOESM1_ESM.pdf (1.2 mb)
ESM 1(PDF 1224 kb)


  1. 1.
    V. Xu P, He Y, Cao X, et al. Activation of serotonin 2C receptors in dopamine neurons inhibits binge-like eating in mice. Biol Psychiatry 2016; 81: 737-747.Google Scholar
  2. 2.
    Sysko, R, Ojserkis, R, Schebendach, JE, Evans, SM, Hildebrandt TB, Walsh, BT. Impulsivity and test meal intake among women with bulimia nervosa. Appetite 2017; 112: 1-8.CrossRefPubMedGoogle Scholar
  3. 3.
    Coffino JA, Orloff NC, Hormes JM. Dietary restraint partially mediates the relationship between impulsivity and binge eating only in lean individuals: the importance of accounting for body mass in studies of restraint. Front Psychol 2016;7:1499.CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Reas DL, Pedersen G, Rø Ø. Impulsivity-related traits distinguish women with co-occurring bulimia nervosa in a psychiatric sample. Int J Eat Disord 2016;49:1093-1096.CrossRefPubMedGoogle Scholar
  5. 5.
    Merlotti E, Mucci A, Volpe U, et al. Impulsiveness in patients with bulimia nervosa: electrophysiological evidence of reduced inhibitory control. Neuropsychobiology 2013;68:116-123.CrossRefPubMedGoogle Scholar
  6. 6.
    Kaisari P, Dourish CT, Higgs S. Attention deficit hyperactivity disorder (ADHD) and disordered eating behaviour: a systematic review and a framework for future research. Clin Psychol Rev 2017;53:109-121.CrossRefPubMedGoogle Scholar
  7. 7.
    Vickers SP, Goddard S, Brammer RJ, Hutson PH, Heal DJ. Investigation of impulsivity in binge-eating rats in a delay-discounting task and its prevention by the d-amphetamine prodrug, lisdexamfetamine. J Psychopharmacol 2017 Feb 1.Google Scholar
  8. 8.
    Silva H, Iturra P, Solari A, et al. Fluoxetine response in impulsive–aggressive behavior and serotonin transporter polymorphism in personality disorder. Psychiatr Genet 2010;20:25-30.CrossRefPubMedGoogle Scholar
  9. 9.
    Downe, KA, Goldfein, JA, Devlin, MJ. Restraint, hunger, and disinhibition following treatment for binge-eating disorder. Int J Eat Disord 2009;42:498-504.CrossRefPubMedGoogle Scholar
  10. 10.
    McElroy SL, Mitchell JE, Wilfley DE, et al. Lisdexamfetamine dimesylate effects on binge eating behaviour and obsessive-compulsive and impulsive features in adults with binge eating disorder. Eur Eat Disord Rev 2016;24:223-231.CrossRefPubMedGoogle Scholar
  11. 11.
    Kemps E, Wilsdon A. Preliminary evidence for a role for impulsivity in cognitive disinhibition in bulimia nervosa. J Clin Exp Neuropsychol 2010;32:515-521.CrossRefPubMedGoogle Scholar
  12. 12.
    Schorr M, Miller KK. The endocrine manifestations of anorexia nervosa: mechanisms and management. Nat Rev Endocrinol 2017; 13: 174-186.CrossRefPubMedGoogle Scholar
  13. 13.
    Strader AD, Woods SC. Gastrointestinal hormones and food intake. Gastroenterology 2005;128:175-191.CrossRefPubMedGoogle Scholar
  14. 14.
    Lutter M, Sakata I, Osborne-Lawrence S, et al. The orexigenic hormone ghrelin defends against depressive symptoms of chronic stress. Nature Neurosci 2008;11:752-753.CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Perello M, Sakata I, Birnbaum S, et al. Ghrelin increases the rewarding value of high-fat diet in an orexin-dependent manner. Biol Psychiatry 2010;67:880-886.CrossRefPubMedGoogle Scholar
  16. 16.
    Prince AC, Brooks SJ, Stahl D, Treasure J, Treasure J. Systematic review and meta-analysis of the baseline concentrations and physiologic responses of gut hormones to food in eating disorders. Am J Clin Nutr 2009;89:755-765.CrossRefPubMedGoogle Scholar
  17. 17.
    Holsen LM, Lawson EA, Christensen KA, Klibanski A, Goldstein JM. Abnormal relationships between the neural response to high- and low-calorie foods and endogenous acylated ghrelin in women with active and weight-recovered anorexia nervosa. Psychiatry Res 2014;223:94-103.CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Monteleone AM, Monteleone P, Dalle Grave R, et al. Ghrelin response to hedonic eating in underweight and short-term weight restored patients with anorexia nervosa. Psychiatry Res 2016;235:55-60.CrossRefPubMedGoogle Scholar
  19. 19.
    Hotta M, Ohwada R, Akamizu T, et al. Ghrelin increases hunger and food intake in patients with restricting-type anorexia nervosa: a pilot study. Endocr J 2009;56:1119-1128.CrossRefPubMedGoogle Scholar
  20. 20.
    Haruta I, Fuku Y, Kinoshita K, et al. One‐year intranasal application of growth hormone releasing peptide‐2 improves body weight and hypoglycemia in a severely emaciated anorexia nervosa patient. J Cachexia Sarcopenia Muscle 2015;6:237-241.CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Motus Therapeutics, Inc.; Massachusetts General Hospital. Phase 2 pilot study to evaluate the safety and efficacy of RM-131 administered to females with anorexia nervosa. Available at: Accessed Jan 12, 2017.
  22. 22.
    Demitrack MA, Lesem MD, Listwak SJ, et al. CSF oxytocin in anorexia nervosa and bulimia nervosa: clinical and pathophysiologic considerations. Am J Psychiatry 1990;147:882-886.CrossRefPubMedGoogle Scholar
  23. 23.
    Lawson EA, Donoho DA, Blum J, et al. Decreased nocturnal oxytocin levels in anorexia nervosa are associated with low bone mineral density and fat mass. J Clin Psychiatry 2011;72:1546-1551.CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Kim Y-R, Kim JH, Kim MJ, Treasure J. Differential methylation of the oxytocin receptor gene in patients with anorexia nervosa: a pilot study. PLOS ONE 2014;9:e88673.CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Kim Y-R, Kim JH, Kim C-H, Shin JG, Treasure J. Association between the oxytocin receptor gene polymorphism (rs53576) and bulimia nervosa. Eur Eat Disord Rev 2015;23:171-178.CrossRefPubMedGoogle Scholar
  26. 26.
    Acevedo SF, Valencia C, Lutter M, McAdams CJ. Severity of eating disorder symptoms related to oxytocin receptor polymorphisms in anorexia nervosa. Psychiatry Res 2015;228:641-648.CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Kim YR, Eom JS, Yang JW, Kang J, Treasure J. The impact of oxytocin on food intake and emotion recognition in patients with eating disorders: a double blind single dose within-subject cross-over design. PLOS ONE 2015;10:e0137514.CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Kim Y-R, Kim C-H, Cardi V, et al. Intranasal oxytocin attenuates attentional bias for eating and fat shape stimuli in patients with anorexia nervosa. Psychoneuroendocrinology 2014;44:133-142.CrossRefPubMedGoogle Scholar
  29. 29.
    Kim Y-R, Kim C-H, Park JH, Pyo J, Treasure J. The impact of intranasal oxytocin on attention to social emotional stimuli in patients with anorexia nervosa: a double blind within-subject cross-over experiment. PLOS ONE 2013;9:e90721.CrossRefGoogle Scholar
  30. 30.
    Fondation Lenval. Oxytocin and incitement to use olfactory stimuli in restrictive anorexia nervosa. Available at: Accessed Jan 12, 2017.
  31. 31.
    Miller KK, Wexler T, Zha AM, et al. Androgen deficiency: association with increased anxiety and depression symptom severity in anorexia nervosa. J Clin Psychiatry 2007;68:959-965.CrossRefPubMedGoogle Scholar
  32. 32.
    Miller KK, Deckersbach T, Rauch SL, et al. Testosterone administration attenuates regional brain hypometabolism in women with anorexia nervosa. Psychiatry Res 2004;132:197-207.CrossRefPubMedGoogle Scholar
  33. 33.
    Miller KK, Grieco KA, Klibanski A. Testosterone administration in women with anorexia nervosa. J Clin Endocrinol Metab 2005;90:1428-1433.CrossRefPubMedGoogle Scholar
  34. 34.
    Miller KK, Meenaghan E, Lawson EA, et al. Effects of risedronate and low-dose transdermal testosterone on bone mineral density in women with anorexia nervosa: a randomized, placebo-controlled study. J Clin Endocrinol Metab 2011;96:2081-2088.CrossRefPubMedPubMedCentralGoogle Scholar
  35. 35.
    National Institute of Mental Health Massachusetts General Hospital. Hormonal factors in the treatment of anorexia nervosa. Available at: Accessed Jan 12, 2017.
  36. 36.
    Khedr EM, Elfetoh NA, Ali AM, Noamany M. Anodal transcranial direct current stimulation over the dorsolateral prefrontal cortex improves anorexia nervosa: a pilot study. Restor Neurol Neurosci 2014;32:789-797.PubMedGoogle Scholar
  37. 37.
    Bambino Gesù Children's Hospital. New treatment perspectives in eating disorders: the efficacy of non-invasive brain-directed treatment. Available at: Accessed Jan 12, 2017.
  38. 38.
    University Hospital, Montpellier. Transcranial Direct Current Stimulation (tDCS) and Anorexia Nervosa (STAR). Available at: Accessed Jan 12, 2017.
  39. 39.
    Van den Eynde F, Guillaume S, Broadbent H, Campbell IC, Schmidt U. Repetitive transcranial magnetic stimulation in anorexia nervosa: a pilot study. Eur Psychiatry 2013;28:98-101.CrossRefPubMedGoogle Scholar
  40. 40.
    McClelland J, Bozhilova N, Nestler S, et al. Improvements in symptoms following neuronavigated repetitive transcranial magnetic stimulation (rTMS) in severe and enduring anorexia nervosa: findings from two case studies. Eur Eat Disord Rev 2013;21:500-506.CrossRefPubMedGoogle Scholar
  41. 41.
    Dunlop K, Woodside DB, Lam E, et al. Increases in frontostriatal connectivity are associated with response to dorsomedial repetitive transcranial magnetic stimulation in refractory binge/purge behaviors. Neuroimage Clin 2015;8:611-618.CrossRefPubMedPubMedCentralGoogle Scholar
  42. 42.
    McClelland J, Kekic M, Campbell IC, Schmidt U. Repetitive transcranial magnetic stimulation (rTMS) treatment in enduring anorexia nervosa: a case series. Eur Eat Disord Rev 2016;24:157-163.CrossRefPubMedGoogle Scholar
  43. 43.
    McClelland J, Kekic M, Bozhilova N, et al. A randomised controlled trial of neuronavigated repetitive transcranial magnetic stimulation (rTMS) in anorexia nervosa. PLOS ONE 2016;11:e0148606.CrossRefPubMedPubMedCentralGoogle Scholar
  44. 44.
    University Hospital, Rouen. rTMS and body shape perception (STIMOREX). Available at: Accessed Jan 12, 2017.
  45. 45.
    University Health Network, Toronto. High-frequency vs. low-frequency vs. sham DMPFC-rTMS for bulimia and anorexia nervosa. Available at: Accessed Jan 12, 2017.
  46. 46.
    Oudijn MS, Storosum JG, Nelis E, Denys D. Is deep brain stimulation a treatment option for anorexia nervosa? BMC Psychiatry 2013;13:277.CrossRefPubMedPubMedCentralGoogle Scholar
  47. 47.
    Kisely S, Hall K, Siskind D, Frater J, Olson S, Crompton D. Deep brain stimulation for obsessive–compulsive disorder: a systematic review and meta-analysis. Psychol Med 2014;44:3533-3542.CrossRefPubMedGoogle Scholar
  48. 48.
    Wu H, Van Dyck-Lippens PJ, Santegoeds R, et al. Deep-brain stimulation for anorexia nervosa. World Neurosurg 2013;80:S29.e1-10.CrossRefPubMedGoogle Scholar
  49. 49.
    McLaughlin NCR, Didie ER, Machado AG, et al. Improvements in anorexia symptoms after deep brain stimulation for intractable obsessive-compulsive disorder. Biol Psychiatry 2013;73:e29-e31.CrossRefPubMedGoogle Scholar
  50. 50.
    Lipsman N, Woodside DB, Giacobbe P, et al. Subcallosal cingulate deep brain stimulation for treatment-refractory anorexia nervosa: a phase 1 pilot trial. Lancet 2013;381:1361-1370.CrossRefPubMedGoogle Scholar
  51. 51.
    Lipsman N, Lam E, Volpini M, et al. Deep brain stimulation of the subcallosal cingulate for treatment-refractory anorexia nervosa: 1 year follow-up of an open-label trial. Lancet Psychiatry 2017;4:285-294.CrossRefPubMedGoogle Scholar
  52. 52.
    University of Oxford; Oxford Health NHS foundation trust. Pilot study of deep brain stimulation for severe anorexia nervosa. Available at: Accessed Jan 12, 2017.
  53. 53.
    Beijing Tiantan Hospital; Beijing Pins Medical Co., Ltd. PINS stimulator system to treat severe anorexia nervosa. Available at: Accessed Jan 12, 2017.
  54. 54.
    Tang-Du Hospital. Deep brain stimulation of nucleus accumbens to treat severe anorexia nervosa. Available at: Accessed Jan 12, 2017.
  55. 55.
    Cui H, Moore J, Ashimi SS, et al. Eating disorder predisposition is associated with ESRRA and HDAC4 mutations. J Clin Invest 2013;123:4706-4713.CrossRefPubMedPubMedCentralGoogle Scholar
  56. 56.
    Cui H, Lu Y, Khan MZ, et al. Behavioral disturbances in estrogen-related receptor alpha-null mice. Cell Rep 2015;11:344-350.CrossRefPubMedPubMedCentralGoogle Scholar
  57. 57.
    Lutter M, Khan MZ, Satio K, et al. The eating-disorder associated HDAC4A778T mutation alters feeding behaviors in female mice. Biol Psychiatry 2017;81:770-777.CrossRefPubMedGoogle Scholar
  58. 58.
    Strum JC, Shehee R, Virley D, et al. Rosiglitazone induces mitochondrial biogenesis in mouse brain. J Alzheimers Dis 2007;11:45-51.CrossRefPubMedGoogle Scholar
  59. 59.
    Colle R, de Larminat D, Rotenberg S, et al. PPAR-γ agonists for the treatment of major depression: a review. Pharmacopsychiatry 2017;50:49–55.PubMedGoogle Scholar
  60. 60.
    Scott-Van Zeeland AA, Bloss CS, Tewhey R, et al. Evidence for the role of EPHX2 gene variants in anorexia nervosa. Mol Psychiatry 2014;19:724-732.CrossRefPubMedGoogle Scholar
  61. 61.
    Shih PB, Yang J, Morisseau C, et al. Dysregulation of soluble epoxide hydrolase and lipidomic profiles in anorexia nervosa. Mol Psychiatry 2016;21:537-546.CrossRefPubMedGoogle Scholar
  62. 62.
    Shih PB. Integrating multi-omics biomarkers and postprandial metabolism to develop personalized treatment for anorexia nervosa. Prostaglandins Other Lipid Mediat 2017 Feb 21Google Scholar
  63. 63.
    Odense University Hospital. Cannabinoid receptor (CB1) agonist treatment in severe chronic anorexia nervosa. Available at: Accessed Jan 12, 2017.
  64. 64.
    Cannabics Pharmaceuticals Inc. Cannabics capsules as treatment to improve cancer related CACS in advanced cancer patients. Available at: Accessed Jan 12, 2017.
  65. 65.
    BioGaia AB; Pediatric Department Clinical Hospital Centre Sestre milosrdnice Gastroenterology, Hepatology and Nutrition Ward. The role of Lactobacillus reuteri in children and adolescents with anorexia nervosa. Available at: Accessed Jan 12, 2017.
  66. 66.
    Nationwide Children's Hospital. Treatment of anxiety and anorexia nervosa in adolescents (TAANA). Available at: Accessed Jan 12, 2017.
  67. 67.
    Asarian L, Bachler T. Neuroendocrine control of satiation. Horm Mol Biol Clin Investig 2014;19:163-192.PubMedGoogle Scholar
  68. 68.
    Dockray GJ. Cholecystokinin. Curr Opin Endocrinol Diabetes Obes 2012;19:8-12.CrossRefPubMedGoogle Scholar
  69. 69.
    Hannon-Engel SL. Regulating satiety in bulimia nervosa: the role of cholecystokinin. Perspect Psychiatr Care 2012;48:34-40.CrossRefPubMedGoogle Scholar
  70. 70.
    Hannon-Engel SL, Filin EE, Wolfe BE. CCK response in bulimia nervosa and following remission. Physiol Behav 2013;122:56-61.CrossRefPubMedPubMedCentralGoogle Scholar
  71. 71.
    St. Luke's-Roosevelt Hospital Center; GlaxoSmithKline. Effect of a CCK-1R agonist on food intake in humans (GSK). Available at: Accessed Jan 12, 2017.
  72. 72.
    Bodnaruc AM, Prud’homme D, Blanchet R, Giroux I. Nutritional modulation of endogenous glucagon-like peptide-1 secretion: a review. Nutr Metab 2016;13:92.CrossRefGoogle Scholar
  73. 73.
    Burcelin R, Gourdy P. Harnessing glucagon‐like peptide‐1 receptor agonists for the pharmacological treatment of overweight and obesity. Obes Rev 2017;18:86-98.CrossRefPubMedGoogle Scholar
  74. 74.
    Dossat AM, Bodell LP, Williams DL, Eckel LA, Keel PK. Preliminary examination of glucagon-like peptide-1 levels in women with purging disorder and bulimia nervosa. Int J Eat Disord 2015;48:199-205.CrossRefPubMedGoogle Scholar
  75. 75.
    Naessen S, Carlstrom K, Holst JJ, Hellstrom PM, Hirschberg AL. Women with bulimia nervosa exhibit attenuated secretion of glucagon-like peptide 1, pancreatic polypeptide, and insulin in response to a meal. Am J Clin Nutr 2011;94:967-972.CrossRefPubMedGoogle Scholar
  76. 76.
    Universiti Kebangsaan Malaysia Medical Centre. Influence of appetite related hormones in binge eating behaviour among the overweight and obese. Available at: Accessed Jan 12, 2017.
  77. 77.
    Spreckley E, Murphy KG. The L-cell in nutritional sensing and the regulation of appetite. Front Nutr 2015;2:23.CrossRefPubMedPubMedCentralGoogle Scholar
  78. 78.
    Kojima S, Nakahara T, Nagai N, et al. Altered ghrelin and peptide YY responses to meals in bulimia nervosa. Clin Endocrinol 2005;62:74-78.CrossRefGoogle Scholar
  79. 79.
    Monteleone P, Martiadis V, Rigamonti AE, et al. Investigation of peptide YY and ghrelin responses to a test meal in bulimia nervosa. Biol Psychiatry 2005;57:926-931.CrossRefPubMedGoogle Scholar
  80. 80.
    Rigamonti AE, Sartorio A, Scognamiglio P, et al. Different effects of cholestyramine on postprandial secretions of cholecystokinin and peptide YY in women with bulimia nervosa. Neuropsychobiology 2014;70:228-234.CrossRefPubMedGoogle Scholar
  81. 81.
    Geliebter A, Hashim SA, Gluck ME. Appetite-related gut peptides, ghrelin, PYY, and GLP-1 in obese women with and without binge eating disorder (BED). Physiol Behav 2008;94:696-699.CrossRefPubMedGoogle Scholar
  82. 82.
    Walker MC, Sander JW. Topiramate: a new antiepileptic drug for refractory epilepsy. Seizure 1996;5:199-203.CrossRefPubMedGoogle Scholar
  83. 83.
    Paravattil B, Wilby KJ, Turgeon R. Topiramate monotherapy for weight reduction in patients with type 2 diabetes mellitus: a systematic review and meta-analysis. Diabetes Res Clin Pract 2016;114:9-14.CrossRefPubMedGoogle Scholar
  84. 84.
    Smith SM, Meyer M, Trinkley KE. Phentermine/topiramate for the treatment of obesity. Ann Pharmacother 2013;47:340-349.CrossRefPubMedGoogle Scholar
  85. 85.
    Guerdjikova AI, Fitch A, McElroy SL. Successful treatment of binge eating disorder with combination phentermine/topiramate extended release. Prim Care Companion CNS Disord 2015;17.Google Scholar
  86. 86.
    Antel J, Hebebrand J. Weight-reducing side effects of the antiepileptic agents topiramate and zonisamide. Handb Exp Pharmacol 2012;209;433-466.CrossRefGoogle Scholar
  87. 87.
    McElroy SL, Kotwal R, Guerdjikova AI, et al. Zonisamide in the treatment of binge eating disorder with obesity: a randomized controlled trial. J Clin Psychiatry 2006;67:1897-1906.CrossRefPubMedGoogle Scholar
  88. 88.
    Guerdjikova AI, Blom TJ, Martens BE, Keck PE, McElroy SL. Zonisamide in the treatment of bulimia nervosa: an open-label, pilot, prospective study. Int J of Eat Disord 2013;46:747-750.CrossRefGoogle Scholar
  89. 89.
    Recant L, Voyles NR, Luciano M, Pert CB. Naltrexone reduces weight gain, alters “β-endorphin”, and reduces insulin output from pancreatic islets of genetically obese mice. Peptides 1980;1:309-313.CrossRefPubMedGoogle Scholar
  90. 90.
    Malcolm R, O'Neil PM, Sexauer JD, Riddle FE, Currey HS, Counts C. A controlled trial of naltrexone in obese humans. Int J Obes 1984;9:347-353.Google Scholar
  91. 91.
    Maggio CA, Presta E, Bracco EF, et al. Naltrexone and human eating behavior: A dose-ranging inpatient trial in moderately obese men. Brain Res Bull 1985;14:657-661.CrossRefPubMedGoogle Scholar
  92. 92.
    Atkinson RL, Berke LK, Drake CR, Bibbs ML, Williams FL, Kaiser DL. Effects of long‐term therapy with naltrexone on body weight in obesity. Clin Pharmacol Ther 1985;38:419-422.CrossRefPubMedGoogle Scholar
  93. 93.
    Plodkowski RA, Nguyen Q, Sundaram U, Nguyen L, Chau DL, St Jeor S. Bupropion and naltrexone: a review of their use individually and in combination for the treatment of obesity. Expert Opin Pharmacother 2009;10:1069-1081.CrossRefPubMedGoogle Scholar
  94. 94.
    Naltrexone/bupropion: Contrave(R); naltrexone SR/bupropion SR. Drugs R D 2010;10:25-32.Google Scholar
  95. 95.
    McElroy SL, Guerdjikova AI, Mori N, Keck PE. Psychopharmacologic treatment of eating disorders: emerging findings. Curr Psychiatry Rep 2015;17:573.CrossRefGoogle Scholar
  96. 96.
    Marazziti D, Piccinni A, Baroni S, Dell'Osso L. Effectiveness of nalmefene in Binge Eating Disorder: a case report. J Clin Psychopharmacol 2016;36:103-104.CrossRefPubMedGoogle Scholar
  97. 97.
    Yale University; Yale School of Medicine. Treatment of binge eating disorder in obesity: naltrexone/bupropion combination versus placebo. Available at: Accessed Jan 12, 2017.
  98. 98.
    Lightlake Sinclair Ltd. Clinical trial on binge eating disorder, treatment with naloxone spray (BED). Available at: Accessed Jan 12, 2017.
  99. 99.
    Kekic M, McClelland J, Bartholdy S, et al. Single-session transcranial direct current stimulation temporarily improves symptoms, mood, and self-regulatory control in bulimia nervosa: a randomised controlled trial. PLOS ONE 2017;12:e0167606.CrossRefPubMedPubMedCentralGoogle Scholar
  100. 100.
    Burgess EE, Sylvester MD, Morse KE, et al. Effects of transcranial direct current stimulation (tDCS) on binge eating disorder. Int J Eat Disord 2016;49:930-936.CrossRefPubMedGoogle Scholar
  101. 101.
    Hausmann A, Mangweth B, Walpoth M, et al. Repetitive transcranial magnetic stimulation (rTMS) in the double-blind treatment of a depressed patient suffering from bulimia nervosa: a case report. Int J Neuropsychopharmacol 2004;7:371-373.CrossRefPubMedGoogle Scholar
  102. 102.
    Van den Eynde F, Claudino AM, Mogg A, et al. Repetitive transcranial magnetic stimulation reduces cue-induced food craving in bulimic disorders. Biol Psychiatry 2010;67:793-795.CrossRefPubMedGoogle Scholar
  103. 103.
    Sutoh C, Koga Y, Kimura H, et al. Repetitive transcranial magnetic stimulation changes cerebral oxygenation on the left dorsolateral prefrontal cortex in bulimia nervosa: a near-infrared spectroscopy pilot study. Eur Eat Disord Rev 2016;24:83-88.CrossRefPubMedGoogle Scholar
  104. 104.
    Downar J, Sankar A, Giacobbe P, Woodside DB, Colton PA. Unanticipated rapid remission of refractory bulimia nervosa, during high-dose repetitive transcranial magnetic stimulation of the dorsomedial prefrontal cortex: a case report. Front Psychiatry 2012;3:30.CrossRefPubMedPubMedCentralGoogle Scholar
  105. 105.
    Gay A, Jaussent I, Sigaud T, et al. A lack of clinical effect of high-frequency rTMS to dorsolateral prefrontal cortex on bulimic symptoms: a randomised, double-blind trial. Eur Eat Disord Rev 2016;24:474-481.CrossRefPubMedGoogle Scholar
  106. 106.
    University Health Network, Toronto. High-frequency vs. low-frequency vs. sham DMPFC-rTMS for bulimia and anorexia nervosa. Available at: Accessed Mar 9, 2017.
  107. 107.
    Centre Hospitalier Universitaire de Saint Etienne. Transcranial magnetic stimulation and bulimic craving. Available at: Accessed Mar 9, 2017.
  108. 108.
    Federal University of São Paulo. The effects of repetitive transcranial magnetic stimulation in obese people with BED. Available at: Accessed Mar 9, 2017.
  109. 109.
    Bambino Gesù Children's Hospital. New treatment perspectives in eating disorders: the efficacy of non-invasive brain-directed treatment. Available at: Accessed Mar 9, 2017.
  110. 110.
    Corwin RL. Binge-type eating induced by limited access in rats does not require energy restriction on the previous day. Appetite 2004;42:139-142.CrossRefPubMedGoogle Scholar
  111. 111.
    S. Czyzyk TA, Sahr AE, Statnick MA. A model of binge-like eating behavior in mice that does not require food deprivation or stress. Obesity 2010;18:1710-1717.Google Scholar
  112. 112.
    T. Halpern CH, Tekriwal A, Santollo J, et al. Amelioration of binge eating by nucleus accumbens shell deep brain stimulation in mice involves D2 receptor modulation. J Neurosci 2013;33:7122-7129.Google Scholar
  113. 113.
    U. Doucette WT, Khokhar JY, Green AI. Nucleus accumbens deep brain stimulation in a rat model of binge eating. Transl Psychiatry 2015;5:e695.Google Scholar
  114. 114.
    W. Statnick MA, Chen Y, Ansonoff M, et al. A novel nociceptin receptor antagonist LY2940094 inhibits excessive feeding behavior in rodents: a possible mechanism for the treatment of binge eating disorder. J Pharmacol Exp Ther 2016;356:493-502.Google Scholar
  115. 115.
    National Institute of Mental Health; New York State Psychiatric Institute. Effectiveness of antibiotic treatment for reducing binge eating and improving digestive function in bulimia nervosa. Available at: Accessed Jan 12, 2017.
  116. 116.
    McLean Hospital. An open label trial of memantine in the treatment of bulimia nervosa and body dysmorphic disorder. Available at: Accessed Jan 12, 2017.
  117. 117.
    National Institute of Mental Health; New York State Psychiatric Institute. Effectiveness of baclofen in the treatment of people with bulimia nervosa or binge eating disorder. Available at: Accessed Jan 12, 2017.

Copyright information

© The American Society for Experimental NeuroTherapeutics, Inc. 2017

Authors and Affiliations

  1. 1.Eating Recovery Center of DallasPlanoUSA

Personalised recommendations