Neurotherapeutics

, Volume 14, Issue 2, pp 265–273 | Cite as

Medulloblastoma: Molecular Classification-Based Personal Therapeutics

  • Tenley C. Archer
  • Elizabeth L. Mahoney
  • Scott L. Pomeroy
Review

Abstract

Recent advances in cancer genomics have revealed 4 distinct subgroups of medulloblastomas, each with unique transcription profiles, DNA alterations and clinical outcome. Molecular classification of medulloblastomas improves predictions of clinical outcome, allowing more accurate matching of intensity of conventional treatments with chemotherapy and radiation to overall prognosis and setting the stage for the introduction of targeted therapies.

Keywords

Medulloblastoma WHO MYC SHH WNT Genomic DNA methylation Subgroups Group 3 Group 4 

Supplementary material

13311_2017_526_MOESM1_ESM.pdf (1.2 mb)
ESM 1(PDF 1224 kb)

References

  1. 1.
    Taylor MD, Northcott PA, Korshunov A, et al. Molecular subgroups of medulloblastoma: the current consensus. Acta Neuropathol 2012;123:465–472.PubMedCrossRefGoogle Scholar
  2. 2.
    Louis DN, Perry A, Reifenberger G, et al. The 2016 World Health Organization Classification of Tumors of the Central Nervous System: a summary. Acta Neuropathol 2016;131:803–820.PubMedCrossRefGoogle Scholar
  3. 3.
    Jones DTW, Jäger N, Kool M, et al. Dissecting the genomic complexity underlying medulloblastoma. Nature 2012;488:100–105.PubMedPubMedCentralCrossRefGoogle Scholar
  4. 4.
    Robinson G, Parker M, Kranenburg TA, et al. Novel mutations target distinct subgroups of medulloblastoma. Nature 2012;488:43–48.PubMedPubMedCentralCrossRefGoogle Scholar
  5. 5.
    Pugh TJ, Weeraratne SD, Archer TC, et al. Medulloblastoma exome sequencing uncovers subtype-specific somatic mutations. Nature 2012;488:106–110.PubMedPubMedCentralCrossRefGoogle Scholar
  6. 6.
    Cho Y-J, Tsherniak A, Tamayo P, et al. Integrative genomic analysis of medulloblastoma identifies a molecular subgroup that drives poor clinical outcome. J Clin Oncol 2011;29:1424–1430.PubMedCrossRefGoogle Scholar
  7. 7.
    Tamayo P, Cho Y-J, Tsherniak A, et al. Predicting relapse in patients with medulloblastoma by integrating evidence from clinical and genomic features. J Clin Oncol 2011;29:1415–1423.PubMedPubMedCentralCrossRefGoogle Scholar
  8. 8.
    Fernandez-Teijeiro A, Betensky RA, Sturla LM, Kim JYH, Tamayo P, Pomeroy SL. Combining gene expression profiles and clinical parameters for risk stratification in medulloblastomas. J Clin Oncol 2004;22:994–998.PubMedCrossRefGoogle Scholar
  9. 9.
    Pomeroy SL, Tamayo P, Gaasenbeek M, et al. Prediction of central nervous system embryonal tumour outcome based on gene expression. Nature 2002;415:436–442.PubMedCrossRefGoogle Scholar
  10. 10.
    Ramaswamy V, Remke M, Bouffet E, et al. Risk stratification of childhood medulloblastoma in the molecular era: the current consensus. Acta Neuropathol 2016;131:821–831.PubMedCrossRefGoogle Scholar
  11. 11.
    Ramaswamy V, Remke M, Adamski J, et al. Medulloblastoma subgroup-specific outcomes in irradiated children: who are the true high-risk patients? Neuro Oncol 2016;18:291–297.PubMedCrossRefGoogle Scholar
  12. 12.
    Bueren von AO, Kortmann R-D, Hoff von K, et al. Treatment of children and adolescents with metastatic medulloblastoma and prognostic relevance of clinical and biologic parameters. J Clin Oncol 2016;34:4151–4160.Google Scholar
  13. 13.
    Moxon-Emre I, Taylor MD, Bouffet E, et al. Intellectual outcome in molecular subgroups of medulloblastoma. J Clin Oncol 2016;34:4161–4170.PubMedCrossRefGoogle Scholar
  14. 14.
    Thompson EM, Hielscher T, Bouffet E, et al. Prognostic value of medulloblastoma extent of resection after accounting for molecular subgroup: a retrospective integrated clinical and molecular analysis. Lancet Oncol 2016;17:484–495.PubMedPubMedCentralCrossRefGoogle Scholar
  15. 15.
    Lawrence MS, Stojanov P, Mermel CH, et al. Discovery and saturation analysis of cancer genes across 21 tumour types. Nature 2014;505:495-501.PubMedPubMedCentralCrossRefGoogle Scholar
  16. 16.
    Lawrence MS, Stojanov P, Polak P, et al. Mutational heterogeneity in cancer and the search for new cancer-associated genes. Nature 2013;499:214–218.PubMedPubMedCentralCrossRefGoogle Scholar
  17. 17.
    Archer TC, Pomeroy SL. Medulloblastoma biology in the post-genomic era. Future Oncol 2012;8:1597–1604.PubMedPubMedCentralCrossRefGoogle Scholar
  18. 18.
    Armstrong GL, Conn LA, Pinner RW. Trends in infectious disease mortality in the United States during the 20th century. JAMA 1999;281:61–66.PubMedCrossRefGoogle Scholar
  19. 19.
    Thariat J, Hannoun-Levi J-M, Sun Myint A, Vuong T, Gérard J-P. Past, present, and future of radiotherapy for the benefit of patients. Nat Rev Clin Oncol 2013;10:52–60.PubMedCrossRefGoogle Scholar
  20. 20.
    Higgins KA, O'Connell K, Liu Y, et al. National Cancer Database analysis of proton versus photon radiation therapy in non-small cell lung cancer. Int J Radiat Oncol Biol Phys 2017;97:128–137.PubMedCrossRefGoogle Scholar
  21. 21.
    Emmons MF, Faião-Flores F, Smalley KSM. The role of phenotypic plasticity in the escape of cancer cells from targeted therapy. Biochem Pharmacol 2016;122:1–9.PubMedCrossRefGoogle Scholar
  22. 22.
    Ades F, Metzger-Filho O. Targeting the cellular signaling: BRAF inhibition and beyond for the treatment of metastatic malignant melanoma. Dermatol Res Pract 2012;2012:259170.PubMedGoogle Scholar
  23. 23.
    Nazarian R, Shi H, Wang Q, et al. Melanomas acquire resistance to B-RAF(V600E) inhibition by RTK or N-RAS upregulation. Nature 2010;468:973–977.PubMedPubMedCentralCrossRefGoogle Scholar
  24. 24.
    Gambacorti-Passerini C, Antolini L, Mahon F-X, et al. Multicenter independent assessment of outcomes in chronic myeloid leukemia patients treated with imatinib. J Natl Cancer Inst 2011;103:553–561.PubMedCrossRefGoogle Scholar
  25. 25.
    Carroll M, Ohno-Jones S, Tamura S, et al. CGP 57148, a tyrosine kinase inhibitor, inhibits the growth of cells expressing BCR-ABL, TEL-ABL, and TEL-PDGFR fusion proteins. Blood 1997;90:4947–4952.PubMedGoogle Scholar
  26. 26.
    Radich JP, Kopecky KJ, Appelbaum FR, et al. A randomized trial of dasatinib 100 mg versus imatinib 400 mg in newly diagnosed chronic-phase chronic myeloid leukemia. Blood 2012;120:3898–3905.PubMedPubMedCentralCrossRefGoogle Scholar
  27. 27.
    Czerwionka M, Korf HW, Hoffmann O, Busch H, Schachenmayr W. Differentiation in medulloblastomas: correlation between the immunocytochemical demonstration of photoreceptor markers (S-antigen, rod-opsin) and the survival rate in 66 patients. Acta Neuropathol 1989;78:629–636.PubMedCrossRefGoogle Scholar
  28. 28.
    Schofield D, West DC, Anthony DC, Marshal R, Sklar J. Correlation of loss of heterozygosity at chromosome 9q with histological subtype in medulloblastomas. Am J Pathol 1995;146:472–480.PubMedPubMedCentralGoogle Scholar
  29. 29.
    Northcott PA, Shih DJH, Remke M, et al. Rapid, reliable, and reproducible molecular sub-grouping of clinical medulloblastoma samples. Acta Neuropathol 2012;123:615–626.PubMedCrossRefGoogle Scholar
  30. 30.
    Kool M, Korshunov A, Remke M, et al. Molecular subgroups of medulloblastoma: an international meta-analysis of transcriptome, genetic aberrations, and clinical data of WNT, SHH, Group 3, and Group 4 medulloblastomas. Acta Neuropathol 2012;123:473–484.PubMedPubMedCentralCrossRefGoogle Scholar
  31. 31.
    Hovestadt V, Jones DTW, Picelli S, et al. Decoding the regulatory landscape of medulloblastoma using DNA methylation sequencing. Nature 2014;510:537-541.PubMedCrossRefGoogle Scholar
  32. 32.
    Mueller S, Chang S. Pediatric brain tumors: current treatment strategies and future therapeutic approaches. Neurotherapeutics 2009;6:570–586.PubMedPubMedCentralCrossRefGoogle Scholar
  33. 33.
    Packer RJ, Gajjar A, Vezina G, et al. Phase III study of craniospinal radiation therapy followed by adjuvant chemotherapy for newly diagnosed average-risk medulloblastoma. J Clin Oncol 2006;24:4202–4208.PubMedCrossRefGoogle Scholar
  34. 34.
    Merchant TE, Kun LE, Krasin MJ, et al. Multi-institution prospective trial of reduced-dose craniospinal irradiation (23.4 Gy) followed by conformal posterior fossa (36 Gy) and primary site irradiation (55.8 Gy) and dose-intensive chemotherapy for average-risk medulloblastoma. Int J Radiat Oncol Biol Phys 2008;70:782–787.PubMedCrossRefGoogle Scholar
  35. 35.
    Gajjar A, Chintagumpala M, Ashley D, et al. Risk-adapted craniospinal radiotherapy followed by high-dose chemotherapy and stem-cell rescue in children with newly diagnosed medulloblastoma (St Jude Medulloblastoma-96): long-term results from a prospective, multicentre trial. Lancet Oncol 2006;7:813–820.PubMedCrossRefGoogle Scholar
  36. 36.
    Wahba HA, Abu-Hegazy M, Wasel Y, Ismail EI, Zidan AS. Adjuvant chemotherapy after reduced craniospinal irradiation dose in children with average-risk medulloblastoma: a 5-year follow-up study. J BUON 2013;18:425–429.PubMedGoogle Scholar
  37. 37.
    Packer RJ, Goldwein J, Nicholson HS, et al. Treatment of children with medulloblastomas with reduced-dose craniospinal radiation therapy and adjuvant chemotherapy: a Children's Cancer Group Study. J Clin Oncol 1999;17:2127–2136.PubMedCrossRefGoogle Scholar
  38. 38.
    Lafay-Cousin L, Smith A, Chi SN, et al. Clinical, pathological, and molecular characterization of infant medulloblastomas treated with sequential high-dose chemotherapy. Pediatr Blood Cancer 2016;63:1527–1534.PubMedCrossRefGoogle Scholar
  39. 39.
    Tarbell NJ, Friedman H, Polkinghorn WR, et al. High-risk medulloblastoma: a pediatric oncology group randomized trial of chemotherapy before or after radiation therapy (POG 9031). J Clin Oncol 2013;31:2936–2941.PubMedPubMedCentralCrossRefGoogle Scholar
  40. 40.
    Tamburrini G, Frassanito P, Chieffo D, Massimi L, Caldarelli M, Di Rocco C. Cerebellar mutism. Childs Nerv Syst 2015;31:1841–1851.PubMedCrossRefGoogle Scholar
  41. 41.
    Ris MD, Packer R, Goldwein J, Jones-Wallace D, Boyett JM. Intellectual outcome after reduced-dose radiation therapy plus adjuvant chemotherapy for medulloblastoma: a Children's Cancer Group study. J Clin Oncol 2001;19:3470–3476.PubMedCrossRefGoogle Scholar
  42. 42.
    Chi SN, Zimmerman MA, Yao X, et al. Intensive multimodality treatment for children with newly diagnosed CNS atypical teratoid rhabdoid tumor. J Clin Oncol 2009;27:385–389.PubMedPubMedCentralCrossRefGoogle Scholar
  43. 43.
    Goldwein JW, Radcliffe J, Johnson J, et al. Updated results of a pilot study of low dose craniospinal irradiation plus chemotherapy for children under five with cerebellar primitive neuroectodermal tumors (medulloblastoma). Int J Radiat Oncol Biol Phys 1996;34:899–904.PubMedCrossRefGoogle Scholar
  44. 44.
    Walker MD, Green SB, Byar DP, et al. Randomized comparisons of radiotherapy and nitrosoureas for the treatment of malignant glioma after surgery. N Engl J Med 1980;303:1323–1329.PubMedCrossRefGoogle Scholar
  45. 45.
    Merchant TE, Kiehna EN, Li C, et al. Modeling radiation dosimetry to predict cognitive outcomes in pediatric patients with CNS embryonal tumors including medulloblastoma. Int J Radiat Oncol Biol Phys 2006;65:210–221.PubMedCrossRefGoogle Scholar
  46. 46.
    Barrera M, Shaw AK, Speechley KN, Maunsell E, Pogany L. Educational and social late effects of childhood cancer and related clinical, personal, and familial characteristics. Cancer 2005;104:1751–1760.PubMedCrossRefGoogle Scholar
  47. 47.
    Palmer SL, Gajjar A, Reddick WE, et al. Predicting intellectual outcome among children treated with 35-40 Gy craniospinal irradiation for medulloblastoma. Neuropsychology 2003;17:548–555.PubMedCrossRefGoogle Scholar
  48. 48.
    Bansal LR, Belair J, Cummings D, Zuccoli G. Late-onset radiation-induced vasculopathy and stroke in a child with medulloblastoma. J Child Neurol 2015;30:800–802.PubMedCrossRefGoogle Scholar
  49. 49.
    Ullrich NJ, Pomeroy SL. Molecular genetics of pediatric central nervous system tumors. Curr Oncol Rep 2006;8:423–429.PubMedCrossRefGoogle Scholar
  50. 50.
    Neglia JP, Robison LL, Stovall M, et al. New primary neoplasms of the central nervous system in survivors of childhood cancer: a report from the Childhood Cancer Survivor Study. J Natl Cancer Inst 2006;98:1528–1537.PubMedCrossRefGoogle Scholar
  51. 51.
    Benson PJ, Sung JH. Cerebral aneurysms following radiotherapy for medulloblastoma. J Neurosurg 1989;70:545–550.PubMedCrossRefGoogle Scholar
  52. 52.
    Northcott PA, Korshunov A, Witt H, et al. Medulloblastoma comprises four distinct molecular variants. J Clin Oncol 2011;29:1408–1414.PubMedCrossRefGoogle Scholar
  53. 53.
    Ellison DW, Dalton J, Kocak M, et al. Medulloblastoma: clinicopathological correlates of SHH, WNT, and non-SHH/WNT molecular subgroups. Acta Neuropathol 2011;121:381–396.PubMedPubMedCentralCrossRefGoogle Scholar
  54. 54.
    Clifford SC, Lannering B, Schwalbe EC, et al. Biomarker-driven stratification of disease-risk in non-metastatic medulloblastoma: results from the multi-center HIT-SIOP-PNET4 clinical trial. Oncotarget 2015;6:38827–38839.PubMedPubMedCentralGoogle Scholar
  55. 55.
    Bueno R, Stawiski EW, Goldstein LD, et al. Comprehensive genomic analysis of malignant pleural mesothelioma identifies recurrent mutations, gene fusions and splicing alterations. Nat Genet 2016;48:407–416.PubMedCrossRefGoogle Scholar
  56. 56.
    Seiwert TY, Zuo Z, Keck MK, et al. Integrative and comparative genomic analysis of HPV-positive and HPV-negative head and neck squamous cell carcinomas. Clin Cancer Res 2014;21:632-641.PubMedPubMedCentralCrossRefGoogle Scholar
  57. 57.
    Jiang L, Gu Z-H, Yan Z-X, et al. Exome sequencing identifies somatic mutations of DDX3X in natural killer/T-cell lymphoma. Nat Genet 2015;47:1061–1066.PubMedCrossRefGoogle Scholar
  58. 58.
    Ojha J, Secreto CR, Rabe KG, et al. Identification of recurrent truncated DDX3X mutations in chronic lymphocytic leukaemia. Br J Haematol 2015;169:445-448.PubMedCrossRefGoogle Scholar
  59. 59.
    Wang K, Kan J, Yuen ST, et al. Exome sequencing identifies frequent mutation of ARID1A in molecular subtypes of gastric cancer. Nat Genet 2011;43:1219–1223.PubMedCrossRefGoogle Scholar
  60. 60.
    Dunford A, Weinstock DM, Savova V, et al. Tumor-suppressor genes that escape from X-inactivation contribute to cancer sex bias. Nat Genet 2016;49:10-16.PubMedCrossRefGoogle Scholar
  61. 61.
    Cheng F, Liu C, Lin C-C, et al. A gene gravity model for the evolution of cancer genomes: a study of 3,000 cancer genomes across 9 cancer types. PLOS Comput Biol 2015;11:e1004497.PubMedPubMedCentralCrossRefGoogle Scholar
  62. 62.
    Trubicka J, Szperl M, Grajkowska W, et al. Identification of a novel inherited ALK variant M1199L in the WNT type of medulloblastoma. Folia Neuropathol 2016;54:23–30.PubMedCrossRefGoogle Scholar
  63. 63.
    Coco S, De Mariano M, Valdora F, et al. Identification of ALK germline mutation (3605delG) in pediatric anaplastic medulloblastoma. J Hum Genet 2012;57:682–684.PubMedCrossRefGoogle Scholar
  64. 64.
    Horie R, Watanabe M, Ishida T, et al. The NPM-ALK oncoprotein abrogates CD30 signaling and constitutive NF-kappaB activation in anaplastic large cell lymphoma. Cancer Cell 2004;5:353–364.PubMedCrossRefGoogle Scholar
  65. 65.
    Ma B, Hottiger MO. Crosstalk between Wnt/β-catenin and NF-κB signaling pathway during inflammation. Front Immunol 2016;7:378.PubMedPubMedCentralGoogle Scholar
  66. 66.
    Hamilton SR, Liu B, Parsons RE, et al. The molecular basis of Turcot's syndrome. N Engl J Med 1995;332:839–847.PubMedCrossRefGoogle Scholar
  67. 67.
    Morin PJ, Sparks AB, Korinek V, et al. Activation of beta-catenin-Tcf signaling in colon cancer by mutations in beta-catenin or APC. Science 1997;275:1787–1790.PubMedCrossRefGoogle Scholar
  68. 68.
    Huang H, Mahler-Araujo BM, Sankila A, et al. APC mutations in sporadic medulloblastomas. Am J Pathol 2000;156:433–437.PubMedPubMedCentralCrossRefGoogle Scholar
  69. 69.
    Phoenix TN, Patmore DM, Boop S, et al. Medulloblastoma genotype dictates blood brain barrier phenotype. Cancer Cell 2016;29:508–522.PubMedPubMedCentralCrossRefGoogle Scholar
  70. 70.
    Daneman R, Agalliu D, Zhou L, Kuhnert F, Kuo CJ, Barres BA. Wnt/beta-catenin signaling is required for CNS, but not non-CNS, angiogenesis. Proc Natl Acad Sci U S A 2009;106:641–646.PubMedPubMedCentralCrossRefGoogle Scholar
  71. 71.
    Kahn M. Can we safely target the WNT pathway? Nat Rev Drug Discov 2014;13:513–532.PubMedPubMedCentralCrossRefGoogle Scholar
  72. 72.
    Dey N, Barwick BG, Moreno CS, et al. Wnt signaling in triple negative breast cancer is associated with metastasis. BMC Cancer 2013;13:537.PubMedPubMedCentralCrossRefGoogle Scholar
  73. 73.
    Northcott PA, Korshunov A, Pfister SM, Taylor MD. The clinical implications of medulloblastoma subgroups. Nat Rev Neurol 2012;8:340–351.PubMedCrossRefGoogle Scholar
  74. 74.
    Zhukova N, Ramaswamy V, Remke M, et al. Subgroup-specific prognostic implications of TP53 mutation in medulloblastoma. J Clin Oncol 2013;31:2927–2935.PubMedPubMedCentralCrossRefGoogle Scholar
  75. 75.
    Kappel S, Janschek E, Wolf B, et al. TP53 germline mutation may affect response to anticancer treatments: analysis of an intensively treated Li-Fraumeni family. Breast Cancer Res Treat 2015;151:671–678.PubMedCrossRefGoogle Scholar
  76. 76.
    Malkin D, Friend SH, Li FP, Strong LC. Germ-line mutations of the p53 tumor-suppressor gene in children and young adults with second malignant neoplasms. N Engl J Med 1997;336:734.PubMedCrossRefGoogle Scholar
  77. 77.
    Tchelebi L, Ashamalla H, Graves PR. Mutant p53 and the response to chemotherapy and radiation. Subcell Biochem 2014;85:133–159.PubMedCrossRefGoogle Scholar
  78. 78.
    Rausch T, Jones DTW, Zapatka M, et al. Genome sequencing of pediatric medulloblastoma links catastrophic DNA rearrangements with TP53 mutations. Cell 2012;148:59–71.PubMedPubMedCentralCrossRefGoogle Scholar
  79. 79.
    Smith MJ, Beetz C, Williams SG, et al. Germline mutations in SUFU cause Gorlin syndrome-associated childhood medulloblastoma and redefine the risk associated with PTCH1 mutations. J Clin Oncol 2014;32:4155–4161.PubMedCrossRefGoogle Scholar
  80. 80.
    Thalakoti S, Geller T. Basal cell nevus syndrome or Gorlin syndrome. Handb Clin Neurol 2015;132:119–128.PubMedCrossRefGoogle Scholar
  81. 81.
    O'Malley S, Weitman D, Olding M, Sekhar L. Multiple neoplasms following craniospinal irradiation for medulloblastoma in a patient with nevoid basal cell carcinoma syndrome. Case report. J Neurosurg 1997;86:286–288.PubMedGoogle Scholar
  82. 82.
    Northcott PA, Hielscher T, Dubuc A, et al. Pediatric and adult sonic hedgehog medulloblastomas are clinically and molecularly distinct. Acta Neuropathol 2011;122:231–240.PubMedPubMedCentralCrossRefGoogle Scholar
  83. 83.
    Kool M, Jones DTW, Jäger N, et al. Genome sequencing of SHH medulloblastoma predicts genotype-related response to smoothened inhibition. Cancer Cell 2014;25:393–405.PubMedPubMedCentralCrossRefGoogle Scholar
  84. 84.
    Ransohoff KJ, Sarin KY, Tang JY. Smoothened inhibitors in Sonic hedgehog subgroup medulloblastoma. J Clin Oncol 2015;33:2692–2694.PubMedCrossRefGoogle Scholar
  85. 85.
    Robinson GW, Orr BA, Wu G, et al. Vismodegib exerts targeted efficacy against recurrent sonic hedgehog-subgroup medulloblastoma: results from phase II Pediatric Brain Tumor Consortium Studies PBTC-025B and PBTC-032. J Clin Oncol 2015;33:2646–2654.PubMedPubMedCentralCrossRefGoogle Scholar
  86. 86.
    Chen JK, Taipale J, Cooper MK, Beachy PA. Inhibition of Hedgehog signaling by direct binding of cyclopamine to Smoothened. Genes Dev 2002;16:2743–2748.PubMedPubMedCentralCrossRefGoogle Scholar
  87. 87.
    Taipale J, Chen JK, Cooper MK, et al. Effects of oncogenic mutations in Smoothened and Patched can be reversed by cyclopamine. Nature 2000;406:1005–1009.PubMedCrossRefGoogle Scholar
  88. 88.
    Ryan SL, Schwalbe EC, Cole M, et al. MYC family amplification and clinical risk-factors interact to predict an extremely poor prognosis in childhood medulloblastoma. Acta Neuropathol 2012;123:501–513.PubMedCrossRefGoogle Scholar
  89. 89.
    Northcott PA, Shih DJH, Peacock J, et al. Subgroup-specific structural variation across 1,000 medulloblastoma genomes. Nature 2012;488:49–56.PubMedPubMedCentralCrossRefGoogle Scholar
  90. 90.
    Zhukova N, Ramaswamy V, Remke M, et al. WNT activation by lithium abrogates TP53 mutation associated radiation resistance in medulloblastoma. Acta Neuropathol Commun 2014;2:174.PubMedPubMedCentralCrossRefGoogle Scholar
  91. 91.
    Ramaswamy V, Remke M, Bouffet E, et al. Recurrence patterns across medulloblastoma subgroups: an integrated clinical and molecular analysis. Lancet Oncol 2013;14:1200–1207.PubMedPubMedCentralCrossRefGoogle Scholar
  92. 92.
    Andrieu G, Belkina AC, Denis GV. Clinical trials for BET inhibitors run ahead of the science. Drug Discov Today Technol 2016;19:45–50.PubMedCrossRefGoogle Scholar
  93. 93.
    Jung M, Gelato KA, Fernández-Montalván A, Siegel S, Haendler B. Targeting BET bromodomains for cancer treatment. Epigenomics. 2015;7:487–501.PubMedCrossRefGoogle Scholar
  94. 94.
    Bandopadhayay P, Bergthold G, Nguyen B, et al. BET bromodomain inhibition of MYC-amplified medulloblastoma. Clin Cancer Res 2014;20:912–925.PubMedCrossRefGoogle Scholar
  95. 95.
    Venkataraman S, Alimova I, Balakrishnan I, et al. Inhibition of BRD4 attenuates tumor cell self-renewal and suppresses stem cell signaling in MYC driven medulloblastoma. Oncotarget 2014;5:2355–2371.PubMedPubMedCentralCrossRefGoogle Scholar
  96. 96.
    Hanaford AR, Archer TC, Price A, et al. DiSCoVERing innovative therapies for rare tumors: combining genetically accurate disease models with in silico analysis to identify novel therapeutic targets. Clin Cancer Res 2016;22:3903-3914.PubMedCrossRefGoogle Scholar
  97. 97.
    Shih DJH, Northcott PA, Remke M, et al. Cytogenetic prognostication within medulloblastoma subgroups. J Clin Oncol 2014;32:886–896.PubMedPubMedCentralCrossRefGoogle Scholar
  98. 98.
    Northcott PA, Jones DTW, Kool M, et al. Medulloblastomics: the end of the beginning. Nat Rev Cancer 2012;12:818–834.PubMedPubMedCentralCrossRefGoogle Scholar
  99. 99.
    Agger K, Cloos PAC, Christensen J, et al. UTX and JMJD3 are histone H3K27 demethylases involved in HOX gene regulation and development. Nature 2007;449:731–734.PubMedCrossRefGoogle Scholar
  100. 100.
    Wang JK, Tsai M-C, Poulin G, et al. The histone demethylase UTX enables RB-dependent cell fate control. Genes Dev 2010;24:327–332.PubMedPubMedCentralCrossRefGoogle Scholar
  101. 101.
    You JS, Jones PA. Cancer genetics and epigenetics: two sides of the same coin? Cancer Cell 2012;22:9–20.PubMedPubMedCentralCrossRefGoogle Scholar
  102. 102.
    Pfister SX, Ashworth A. Marked for death: targeting epigenetic changes in cancer. Nat Rev Drug Discov 2017 Mar 10 [Epub ahead of print].Google Scholar
  103. 103.
    Cohen AL, Piccolo SR, Cheng L, et al. Genomic pathway analysis reveals that EZH2 and HDAC4 represent mutually exclusive epigenetic pathways across human cancers. BMC Med Genomics 2013;6:35.PubMedPubMedCentralCrossRefGoogle Scholar
  104. 104.
    Wang K, Shrestha R, Wyatt AW, et al. A meta-analysis approach for characterizing pan-cancer mechanisms of drug sensitivity in cell lines. PLOS ONE. 2014;9:e103050.PubMedPubMedCentralCrossRefGoogle Scholar
  105. 105.
    Morfouace M, Shelat A, Jacus M, et al. Pemetrexed and gemcitabine as combination therapy for the treatment of Group3 medulloblastoma. Cancer Cell 2014;25:516–529.PubMedPubMedCentralCrossRefGoogle Scholar
  106. 106.
    Pei Y, Liu K-W, Wang J, et al. HDAC and PI3K antagonists cooperate to inhibit growth of MYC-driven medulloblastoma. Cancer Cell 2016;29:311–323.PubMedPubMedCentralCrossRefGoogle Scholar
  107. 107.
    Wang X, Dubuc AM, Ramaswamy V, et al. Medulloblastoma subgroups remain stable across primary and metastatic compartments. Acta Neuropathol 2015;129:449–457.PubMedPubMedCentralCrossRefGoogle Scholar
  108. 108.
    Morrissy AS, Garzia L, Shih DJH, et al. Divergent clonal selection dominates medulloblastoma at recurrence. Nature 2016;529:351–37.PubMedPubMedCentralCrossRefGoogle Scholar
  109. 109.
    Archer TC, Pomeroy SL. Defining the molecular landscape of ependymomas. Cancer Cell 2015;27:613–615.PubMedCrossRefGoogle Scholar
  110. 110.
    Pajtler KW, Witt H, Sill M, et al. Molecular Classification of ependymal tumors across all CNS compartments, histopathological grades, and age groups. Cancer Cell 2015;27:728–743.PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© The American Society for Experimental NeuroTherapeutics, Inc. 2017

Authors and Affiliations

  • Tenley C. Archer
    • 1
    • 2
  • Elizabeth L. Mahoney
    • 1
  • Scott L. Pomeroy
    • 1
    • 2
  1. 1.Department of NeurologyBoston Children’s HospitalBostonUSA
  2. 2.Harvard Medical SchoolBostonUSA

Personalised recommendations