, Volume 14, Issue 2, pp 321–332 | Cite as

New Directions in Anti-Angiogenic Therapy for Glioblastoma



Anti-angiogenic therapy has become an important component in the treatment of many solid tumors given the importance of adequate blood supply for tumor growth and metastasis. Despite promising preclinical data and early clinical trials, anti-angiogenic agents have failed to show a survival benefit in randomized controlled trials of patients with glioblastoma. In particular, agents targeting vascular endothelial growth factor (VEGF) appear to prolong progression free survival, possibly improve quality of life, and decrease steroid usage, yet the trials to date have demonstrated no extension of overall survival. In order to improve duration of response and convey a survival benefit, additional research is still needed to explore alternative pro-angiogenic pathways, mechanisms of resistance, combination strategies, and biomarkers to predict therapeutic response.


Angiogenesis Glioblastoma Glioma Bevacizumab VEGF 

Supplementary material

13311_2016_510_MOESM1_ESM.pdf (932 kb)
ESM 1(PDF 932 kb)


  1. 1.
    Stupp R, Mason WP, van den Bent MJ, et al (2005) Radiotherapy plus concomitant and adjuvant temozolomide for glioblastoma. N Engl J Med 352:987–996PubMedCrossRefGoogle Scholar
  2. 2.
    Gilbert MR, Wang M, Aldape KD, et al (2013) Dose-dense temozolomide for newly diagnosed glioblastoma: a randomized phase III clinical trial. J Clin Oncol 31:4085–91PubMedPubMedCentralCrossRefGoogle Scholar
  3. 3.
    Friedman HS, Prados MD, Wen PY, et al (2009) Bevacizumab alone and in combination with irinotecan in recurrent glioblastoma. J Clin Oncol 27:4733–4740Google Scholar
  4. 4.
    Kreisl TN, Kim L, Moore K, et al (2009) Phase II trial of single-agent bevacizumab followed by bevacizumab plus irinotecan at tumor progression in recurrent glioblastoma. J Clin Oncol 27:740–745Google Scholar
  5. 5.
    Taal W, Oosterkamp HM, Walenkamp AME, et al (2014) Single-agent bevacizumab or lomustine versus a combination of bevacizumab plus lomustine in patients with recurrent glioblastoma (BELOB trial): A randomised controlled phase 2 trial. Lancet Oncol 15:943–953Google Scholar
  6. 6.
    Wick W, Brandes A, Gorlia T, et al (2015) Phase III trial exploring the combination of bevacizumab and lomustine in patients with first recurrence of a glioblastoma: the EORTC 26101 trial. Neuro Oncol 17:v1.5-v1Google Scholar
  7. 7.
    Batchelor TT, Mulholland P, Neyns B, et al (2013) Phase III randomized trial comparing the efficacy of cediranib as monotherapy, and in combination with lomustine, versus lomustine alone in patients with recurrent glioblastoma. J Clin Oncol 31:3212–3218Google Scholar
  8. 8.
    Wick W, Puduvalli VK, Chamberlain MC, et al (2010) Phase III study of enzastaurin compared with lomustine in the treatment of recurrent intracranial glioblastoma. J Clin Oncol 28:1168–1174Google Scholar
  9. 9.
    Gilbert MR, Dignam JJ, Armstrong TS, et al (2014) A randomized trial of bevacizumab for newly diagnosed glioblastoma. N Engl J Med 370:699–708Google Scholar
  10. 10.
    Chinot OL, Wick W, Mason W, et al (2014) Bevacizumab plus radiotherapy-temozolomide for newly diagnosed glioblastoma. N Engl J Med 370:709–722Google Scholar
  11. 11.
    Herrlinger U, Schäfer N, Steinbach JP, et al (2016) Bevacizumab plus irinotecan versus temozolomide in newly diagnosed O6-methylguanine-DNA methyltransferase nonmethylated glioblastoma: the randomized GLARIUS trial. J Clin Oncol. doi: 10.1200/JCO.2015.63.4691
  12. 12.
    Hurwitz H, Fehrenbacher L, Novotny W, et al (2004) Bevacizumab plus irinotecan, fluorouracil, and leucovorin for metastatic colorectal cancer. N Engl J Med 350:2335–42PubMedCrossRefGoogle Scholar
  13. 13.
    Cohen MH, Gootenberg J, Keegan P, Pazdur R (2007) FDA drug approval summary: bevacizumab (Avastin(R)) plus carboplatin and paclitaxel as first-line treatment of advanced/metastatic recurrent nonsquamous non-small cell lung cancer. Oncologist 12:713–718PubMedCrossRefGoogle Scholar
  14. 14.
    Summers J, Cohen MH, Keegan P, Pazdur R (2010) FDA drug approval summary: bevacizumab plus interferon for advanced renal cell carcinoma. Oncologist 15:104–111PubMedPubMedCentralCrossRefGoogle Scholar
  15. 15.
    Cohen MH, Shen YL, Keegan P, Pazdur R (2009) FDA drug approval summary: bevacizumab (Avastin) as treatment of recurrent glioblastoma multiforme. Oncologist 14:1131–1138PubMedCrossRefGoogle Scholar
  16. 16.
    Carmeliet P, Jain RK (2011) Molecular mechanisms and clinical applications of angiogenesis. Nature 473:298–307PubMedPubMedCentralCrossRefGoogle Scholar
  17. 17.
    Wang R, Chadalavada K, Wilshire J, Kowalik U, Hovinga KE, Geber A, Fligelman B, Leversha M, Brennan C, Tabar V (2010) Glioblastoma stem-like cells give rise to tumour endothelium. Nature 468:829–833PubMedCrossRefGoogle Scholar
  18. 18.
    Ricci-Vitiani L, Pallini R, Biffoni M, et al (2010) Tumour vascularization via endothelial differentiation of glioblastoma stem-like cells. Nature 468:824–8PubMedCrossRefGoogle Scholar
  19. 19.
    Lu-Emerson C, Duda DG, Emblem KE, Taylor JW, Gerstner ER, Loeffler JS, Batchelor TT, Jain RK (2015) Lessons from anti-vascular endothelial growth factor and anti-vascular endothelial growth factor receptor trials in patients with glioblastoma. J Clin Oncol 33:1197–1213PubMedPubMedCentralCrossRefGoogle Scholar
  20. 20.
    Du R, Lu K V, Petritsch C, et al (2008) HIF1alpha induces the recruitment of bone marrow-derived vascular modulatory cells to regulate tumor angiogenesis and invasion. Cancer Cell 13:206–20PubMedPubMedCentralCrossRefGoogle Scholar
  21. 21.
    Jain RK (2014) Antiangiogenesis strategies revisited: from starving tumors to alleviating hypoxia. Cancer Cell 26:605–622PubMedPubMedCentralCrossRefGoogle Scholar
  22. 22.
    Shih AH, Holland EC (2006) Platelet-derived growth factor (PDGF) and glial tumorigenesis. Cancer Lett 232:139–147PubMedCrossRefGoogle Scholar
  23. 23.
    Reiss Y, Machein MR, Plate KH (2005) The role of angiopoietins during angiogenesis in gliomas. Brain Pathol 15:311–317PubMedCrossRefGoogle Scholar
  24. 24.
    Brat DJ, Bellail AC, Van Meir EG (2005) The role of interleukin-8 and its receptors in gliomagenesis and tumoral angiogenesis. Neuro Oncol 7:122–33PubMedPubMedCentralCrossRefGoogle Scholar
  25. 25.
    Schmidt NO, Westphal M, Hagel C, Ergün S, Stavrou D, Rosen EM, Lamszus K (1999) Levels of vascular endothelial growth factor, hepatocyte growth factor/scatter factor and basic fibroblast growth factor in human gliomas and their relation to angiogenesis. Int J Cancer 84:10–8PubMedCrossRefGoogle Scholar
  26. 26.
    Jayson GC, Kerbel R, Ellis LM, Harris AL (2016) Antiangiogenic therapy in oncology: current status and future directions. Lancet (London, England) 70:6171–80Google Scholar
  27. 27.
    Fine HA, Figg WD, Jaeckle K, et al (2000) Phase II trial of the antiangiogenic agent thalidomide in patients with recurrent high-grade gliomas. J Clin Oncol 18:708–15PubMedCrossRefGoogle Scholar
  28. 28.
    Marx GM, Pavlakis N, McCowatt S, Boyle FM, Levi JA, Bell DR, Cook R, Biggs M, Little N, Wheeler HR (2001) Phase II study of thalidomide in the treatment of recurrent glioblastoma multiforme. J Neurooncol 54:31–8PubMedCrossRefGoogle Scholar
  29. 29.
    Chang SM, Lamborn KR, Malec M, Larson D, Wara W, Sneed P, Rabbitt J, Page M, Nicholas MK, Prados MD (2004) Phase II study of temozolomide and thalidomide with radiation therapy for newly diagnosed glioblastoma multiforme. Int J Radiat Oncol Biol Phys 60:353–357PubMedCrossRefGoogle Scholar
  30. 30.
    Fine HA, Wen PY, Maher EA, Viscosi E, Batchelor T, Lakhani N, Figg WD, Purow BW, Borkowf CB (2003) Phase II trial of thalidomide and carmustine for patients with recurrent high-grade gliomas. J Clin Oncol 21:2299–2304PubMedCrossRefGoogle Scholar
  31. 31.
    Kesari S, Schiff D, Henson JW, et al (2008) Phase II study of temozolomide, thalidomide, and celecoxib for newly diagnosed glioblastoma in adults. Neuro Oncol 10:300–308PubMedPubMedCentralCrossRefGoogle Scholar
  32. 32.
    Drappatz J, Wong ET, Schiff D, et al (2009) A pilot safety study of lenalidomide and radiotherapy for patients with newly diagnosed glioblastoma multiforme. Int J Radiat Oncol Biol Phys 73:222–227PubMedCrossRefGoogle Scholar
  33. 33.
    Fine HA, Kim L, Albert PS, Duic JP, Ma H, Zhang W, Tohnya T, Figg WD, Royce C (2007) A phase I trial of lenalidomide in patients with recurrent primary central nervous system tumors. Clin Cancer Res 13:7101–6PubMedCrossRefGoogle Scholar
  34. 34.
    Mikkelsen T, Lush R, Grossman SA, Carson KA, Fisher JD, Alavi JB, Rosenfeld S (2007) Phase II clinical and pharmacologic study of radiation therapy and carboxyamido-triazole (CAI) in adults with newly diagnosed glioblastoma multiforme. Invest New Drugs 25:259–63PubMedCrossRefGoogle Scholar
  35. 35.
    Brem S, Grossman S a, Carson K a, New P, Phuphanich S, Alavi JB, Mikkelsen T, Fisher JD (2005) Phase 2 trial of copper depletion and penicillamine as antiangiogenesis therapy of glioblastoma. Neuro Oncol 7:246–253Google Scholar
  36. 36.
    Kim KJ, Li B, Winer J, Armanini M, Gillett N, Phillips HS, Ferrara N (1993) Inhibition of vascular endothelial growth factor-induced angiogenesis suppresses tumour growth in vivo. Nature 362:841–4PubMedCrossRefGoogle Scholar
  37. 37.
    Rubenstein JL, Kim J, Ozawa T, Zhang M, Westphal M, Deen DF, Shuman MA (2000) Anti-VEGF antibody treatment of glioblastoma prolongs survival but results in increased vascular cooption. Neoplasia 2:306–14PubMedPubMedCentralCrossRefGoogle Scholar
  38. 38.
    Jahnke K, Muldoon LL, Varallyay CG, Lewin SJ, Kraemer DF, Neuwelt EA (2009) Bevacizumab and carboplatin increase survival and asymptomatic tumor volume in a glioma model. Neuro Oncol 11:142–150PubMedPubMedCentralCrossRefGoogle Scholar
  39. 39.
    Lee CG, Heijn M, di Tomaso E, et al (2000) Anti-vascular endothelial growth factor treatment augments tumor radiation response under normoxic or hypoxic conditions. Cancer Res 60:5565–5570PubMedGoogle Scholar
  40. 40.
    Folkman J (1971) Tumor angiogenesis: therapeutic implications. N Engl J Med 285:1182–6PubMedCrossRefGoogle Scholar
  41. 41.
    Ellingson BM, Cloughesy TF, Lai A, Nghiemphu PL, Mischel PS, Pope WB (2011) Quantitative volumetric analysis of conventional MRI response in recurrent glioblastoma treated with bevacizumab. Neuro Oncol 13:401–409PubMedPubMedCentralCrossRefGoogle Scholar
  42. 42.
    Gorlia T, Stupp R, Brandes AA, et al (2012) New prognostic factors and calculators for outcome prediction in patients with recurrent glioblastoma: A pooled analysis of EORTC Brain Tumour Group phase i and II clinical trials. Eur J Cancer 48:1176–1184PubMedCrossRefGoogle Scholar
  43. 43.
    Winkler F, Kozin S V., Tong RT, et al (2004) Kinetics of vascular normalization by VEGFR2 blockade governs brain tumor response to radiation: Role of oxygenation, angiopoietin-1, and matrix metalloproteinases. Cancer Cell 6:553–563PubMedGoogle Scholar
  44. 44.
    Batchelor TT, Sorensen AG, di Tomaso E, et al (2007) AZD2171, a pan-VEGF receptor tyrosine kinase inhibitor, normalizes tumor vasculature and alleviates edema in glioblastoma patients. Cancer Cell 11:83–95PubMedPubMedCentralCrossRefGoogle Scholar
  45. 45.
    Batchelor TT, Duda DG, Di Tomaso E, et al (2010) Phase II study of cediranib, an oral pan-vascular endothelial growth factor receptor tyrosine kinase inhibitor, in patients with recurrent glioblastoma. J Clin Oncol 28:2817–2823PubMedPubMedCentralCrossRefGoogle Scholar
  46. 46.
    Odia Y, Iwamoto FM, Moustakas A, Fraum TJ, Salgado CA, Li A, Kreisl TN, Sul J, Butman JA, Fine HA (2016) A phase II trial of enzastaurin (LY317615) in combination with bevacizumab in adults with recurrent malignant gliomas. J Neurooncol 127:127–135PubMedCrossRefGoogle Scholar
  47. 47.
    Nabors LB, Mikkelsen T, Rosenfeld SS, et al (2007) Phase I and correlative biology study of cilengitide in patients with recurrent malignant glioma. J Clin Oncol 25:1651–7PubMedCrossRefGoogle Scholar
  48. 48.
    Reardon DA, Fink KL, Mikkelsen T, et al (2008) Randomized phase II study of cilengitide, an integrin-targeting arginine-glycine-aspartic acid peptide, in recurrent glioblastoma multiforme. J Clin Oncol 26:5610–5617PubMedCrossRefGoogle Scholar
  49. 49.
    Stupp R, Hegi ME, Neyns B, et al (2010) Phase I/IIa study of cilengitide and temozolomide with concomitant radiotherapy followed by cilengitide and temozolomide maintenance therapy in patients with newly diagnosed glioblastoma. J Clin Oncol 28:2712–2718PubMedCrossRefGoogle Scholar
  50. 50.
    Stupp R, Hegi ME, Gorlia T, et al (2014) Cilengitide combined with standard treatment for patients with newly diagnosed glioblastoma with methylated MGMT promoter (CENTRIC EORTC 26071-22072 study): a multicentre, randomised, open-label, phase 3 trial. Lancet Oncol 15:1100–1108PubMedCrossRefGoogle Scholar
  51. 51.
    Bogdahn U, Hau P, Stockhammer G, et al (2011) Targeted therapy for high-grade glioma with the TGF-beta2 inhibitor trabedersen: Results of a randomized and controlled phase IIb study. Neuro Oncol 13:132–142PubMedCrossRefGoogle Scholar
  52. 52.
    Schlingensiepen KH, Schlingensiepen R, Steinbrecher A, Hau P, Bogdahn U, Fischer-Blass B, Jachimczak P (2006) Targeted tumor therapy with the TGF-beta 2 antisense compound AP 12009. Cytokine Growth Factor Rev 17:129–139PubMedCrossRefGoogle Scholar
  53. 53.
    Groves MD, Puduvalli VK, Hess KR, Jaeckle KA, Peterson P, Yung WKA, Levin VA (2002) Phase II trial of temozolomide plus the matrix metalloproteinase inhibitor, marimastat, in recurrent and progressive glioblastoma multiforme. J Clin Oncol 20:1383–8PubMedCrossRefGoogle Scholar
  54. 54.
    Levin VA, Phuphanich S, Glantz MJ, et al (2002) Randomized phase II study of temozolomide (TMZ) with and without the matrix metalloprotease (MMP) inhibitor prinomastat in patients (pts) with glioblastoma multiforme (GBM) following best surgery and radiation therapy. Proc Am Soc Clin Oncol 21:26aGoogle Scholar
  55. 55.
    Levin VA, Phuphanich S, Yung WKA, Forsyth PA, Del Maestro R, Perry JR, Fuller GN, Baillet M (2006) Randomized, double-blind, placebo-controlled trial of marimastat in glioblastoma multiforme patients following surgery and irradiation. J Neurooncol 78:295–302PubMedCrossRefGoogle Scholar
  56. 56.
    Heissig B, Hattori K, Dias S, et al (2002) Recruitment of stem and progenitor cells from the bone marrow niche requires MMP-9 mediated release of kit-ligand. Cell 109:625–37PubMedPubMedCentralCrossRefGoogle Scholar
  57. 57.
    Rundhaug JE (2005) Matrix metalloproteinases and angiogenesis. Angiogenesis Review Series. J Cell Mol Med 9:267–285PubMedCrossRefGoogle Scholar
  58. 58.
    Massagué J (2008) TGFb in cancer. Cell 134:215–230PubMedPubMedCentralCrossRefGoogle Scholar
  59. 59.
    Gerald D, Chintharlapalli S, Augustin HG, Benjamin LE (2013) Angiopoietin-2: An attractive target for improved antiangiogenic tumor therapy. Cancer Res 73:1649–1657PubMedCrossRefGoogle Scholar
  60. 60.
    Kangsamaksin T, Murtomaki A, Kofler NM, Cuervo H, Chaudhri RA, Tattersall IW, Rosenstiel PE, Shawber CJ, Kitajewski J (2015) NOTCH decoys that selectively block DLL/NOTCH or JAG/NOTCH disrupt angiogenesis by unique mechanisms to inhibit tumor growth. Cancer Discov 5:182–97PubMedCrossRefGoogle Scholar
  61. 61.
    Smith DC, Eisenberg PD, Manikhas G, Chugh R, Gubens MA, Stagg RJ, Kapoun AM, Xu L, Dupont J, Sikic B (2014) A phase I dose escalation and expansion study of the anticancer stem cell agent demcizumab (Anti-DLL4) in patients with previously treated solid tumors. Clin Cancer Res 20:6295–6303PubMedCrossRefGoogle Scholar
  62. 62.
    Wen PY, Schiff D, Cloughesy TF, et al (2011) A phase II study evaluating the efficacy and safety of AMG 102 (rilotumumab) in patients with recurrent glioblastoma. Neuro Oncol 13:437–446PubMedPubMedCentralCrossRefGoogle Scholar
  63. 63.
    Cloughesy TF, Finocchiaro G, Belda C, Recht L, Brandes AA, Weller M, Liu B, Bruey J, Verret W (2015) Onartuzumab plus bevacizumab versus placebo plus bevacizumab in recurrent glioblastoma (GBM): HGF and MGMT biomarker data. J Clin Oncol 33:abstr 2015Google Scholar
  64. 64.
    Lee Y, Lee J-K, Ahn SH, Lee J, Nam D-H (2015) WNT signaling in glioblastoma and therapeutic opportunities. Lab Investig 0:1–14Google Scholar
  65. 65.
    Therasse P, Arbuck SG, Eisenhauer EA, et al (2000) New guidelines to evaluate the response to treatment in solid tumors. J Natl Cancer Inst 92:205–216CrossRefGoogle Scholar
  66. 66.
    Levin VA, Crafts DC, Norman DM, Hoffer PB, Spire J-P, Wilson CB (1977) Criteria for evaluating patients undergoing chemotherapy for malignant brain tumors. J Neurosurg 47:329–335PubMedCrossRefGoogle Scholar
  67. 67.
    Macdonald DR, Cascino TL, Schold SC, Cairncross JG (1990) Response criteria for phase II studies of supratentorial malignant glioma. J Clin Oncol 8:1277–80PubMedCrossRefGoogle Scholar
  68. 68.
    Wick W, Weller M, Van Den Bent M, Stupp R (2010) Bevacizumab and recurrent malignant gliomas: A European perspective. J Clin Oncol 28:188–189CrossRefGoogle Scholar
  69. 69.
    Lee EQ, Reardon DA, Schiff D, et al (2015) Phase II study of panobinostat in combination with bevacizumab for recurrent glioblastoma and anaplastic glioma. Neuro Oncol 17:862–867PubMedPubMedCentralCrossRefGoogle Scholar
  70. 70.
    Norden AD, Young GS, Setayesh K, et al (2008) Bevacizumab for recurrent malignant gliomas: efficacy, toxicity, and patterns of recurrence. Neurology 70:779–87PubMedCrossRefGoogle Scholar
  71. 71.
    Francesconi AB, Dupre S, Matos M, Martin D, Hughes BG, Wyld DK, Lickliter JD (2010) Carboplatin and etoposide combined with bevacizumab for the treatment of recurrent glioblastoma multiforme. J Clin Neurosci 17:970–4PubMedCrossRefGoogle Scholar
  72. 72.
    Reardon DA, Desjardins A, Peters KB, et al (2012) Phase II study of carboplatin, irinotecan, and bevacizumab for bevacizumab naïve, recurrent glioblastoma. J Neurooncol 107:155–64PubMedCrossRefGoogle Scholar
  73. 73.
    Reardon DA, Desjardins A, Vredenburgh JJ, et al (2009) Metronomic chemotherapy with daily, oral etoposide plus bevacizumab for recurrent malignant glioma: a phase II study. Br J Cancer 101:1986–94PubMedPubMedCentralCrossRefGoogle Scholar
  74. 74.
    Ali SA, McHayleh WM, Ahmad A, Sehgal R, Braffet M, Rahman M, Bejjani G, Friedland DM (2008) Bevacizumab and irinotecan therapy in glioblastoma multiforme: a series of 13 cases. J Neurosurg 109:268–72PubMedCrossRefGoogle Scholar
  75. 75.
    Bokstein F, Shpigel S, Blumenthal DT (2008) Treatment with bevacizumab and irinotecan for recurrent high-grade glial tumors. Cancer 112:2267–2273PubMedCrossRefGoogle Scholar
  76. 76.
    Kang TY, Jin T, Elinzano H, Peereboom D (2008) Irinotecan and bevacizumab in progressive primary brain tumors, an evaluation of efficacy and safety. J Neurooncol 89:113–118PubMedCrossRefGoogle Scholar
  77. 77.
    Zuniga RM, Torcuator R, Jain R, Anderson J, Doyle T, Ellika S, Schultz L, Mikkelsen T (2009) Efficacy, safety and patterns of response and recurrence in patients with recurrent high-grade gliomas treated with bevacizumab plus irinotecan. J Neurooncol 91:329–336PubMedCrossRefGoogle Scholar
  78. 78.
    Nghiemphu PL, Liu W, Lee Y, et al (2009) Bevacizumab and chemotherapy for recurrent glioblastoma: A single-institution experience. Neurology 72:1217–1222PubMedPubMedCentralCrossRefGoogle Scholar
  79. 79.
    Desjardins A, Reardon DA, Coan A, Marcello J, Herndon JE, Bailey L, Peters KB, Friedman HS, Vredenburgh JJ (2012) Bevacizumab and daily temozolomide for recurrent glioblastoma. Cancer 118:1302–1312PubMedCrossRefGoogle Scholar
  80. 80.
    Sathornsumetee S, Desjardins A, Vredenburgh JJ, et al (2010) Phase II trial of bevacizumab and erlotinib in patients with recurrent malignant glioma. Neuro Oncol 12:1300–1310PubMedPubMedCentralGoogle Scholar
  81. 81.
    Galanis E, Anderson SK, Lafky JM, et al (2013) Phase II study of bevacizumab in combination with sorafenib in recurrent glioblastoma (N0776): a north central cancer treatment group trial. Clin Cancer Res 19:4816–23PubMedCrossRefGoogle Scholar
  82. 82.
    Drappatz J, Lee EQ, Hammond S, et al (2012) Phase I study of panobinostat in combination with bevacizumab for recurrent high-grade glioma. J Neurooncol 107:133–8PubMedCrossRefGoogle Scholar
  83. 83.
    Lassen U, Sorensen M, Gaziel TB, Hasselbalch B, Poulsen HS (2013) Phase II study of bevacizumab and temsirolimus combination therapy for recurrent glioblastoma multiforme. Anticancer Res 33:1657–1660PubMedGoogle Scholar
  84. 84.
    Møller S, Grunnet K, Hansen S, Schultz H, Holmberg M, Sorensen M, Poulsen HS, Lassen U (2012) A phase II trial with bevacizumab and irinotecan for patients with primary brain tumors and progression after standard therapy. Acta Oncol (Madr) 51:797–804CrossRefGoogle Scholar
  85. 85.
    Soffietti R, Trevisan E, Bertero L, et al (2014) Bevacizumab and fotemustine for recurrent glioblastoma: A phase II study of AINO (Italian Association of Neuro-Oncology). J Neurooncol 116:533–541PubMedCrossRefGoogle Scholar
  86. 86.
    Reardon DA, Desjardins A, Peters KB, et al (2011) Phase 2 study of carboplatin, irinotecan, and bevacizumab for recurrent glioblastoma after progression on bevacizumab therapy. Cancer 117:5351–8PubMedPubMedCentralCrossRefGoogle Scholar
  87. 87.
    Raizer JJ, Giglio P, Hu J, et al (2016) A phase II study of bevacizumab and erlotinib after radiation and temozolomide in MGMT unmethylated GBM patients. J Neurooncol 126:185–192PubMedPubMedCentralCrossRefGoogle Scholar
  88. 88.
    Field KM, Simes J, Nowak AK, et al (2015) Randomized phase 2 study of carboplatin and bevacizumab in recurrent glioblastoma. Neuro Oncol 17:1504–1513PubMedPubMedCentralCrossRefGoogle Scholar
  89. 89.
    Cuneo KC, Vredenburgh JJ, Sampson JH, Reardon DA, Desjardins A, Peters KB, Friedman HS, Willett CG, Kirkpatrick JP (2013) Safety and efficacy of stereotactic radiosurgery and adjuvant bevacizumab in patients with recurrent malignant gliomas. Int J Radiat Oncol Biol Phys 82:2018–2024CrossRefGoogle Scholar
  90. 90.
    Cabrera AR, Cuneo KC, Vredenburgh JJ, Sampson JH, Kirkpatrick JP (2012) Stereotactic radiosurgery and bevacizumab for recurrent glioblastoma multiforme. J Natl Compr Canc Netw 10:695–699PubMedGoogle Scholar
  91. 91.
    Gutin PH, Iwamoto FM, Beal K, Mohile NA, Karimi S, Hou BL, Lymberis S, Yamada Y, Chang J, Abrey LE (2009) Safety and efficacy of bevacizumab with hypofractionated stereotactic irradiation for recurrent malignant gliomas. Int J Radiat Oncol Biol Phys 75:156–63PubMedPubMedCentralCrossRefGoogle Scholar
  92. 92.
    Lai A, Tran A, Nghiemphu PL, et al (2011) Phase II study of bevacizumab plus temozolomide during and after radiation therapy for patients with newly diagnosed glioblastoma multiforme. J Clin Oncol 29:142–148PubMedCrossRefGoogle Scholar
  93. 93.
    Vredenburgh JJ, Desjardins A, Kirkpatrick JP, et al (2012) Addition of bevacizumab to standard radiation therapy and daily temozolomide is associated with minimal toxicity in newly diagnosed glioblastoma multiforme. Int J Radiat Oncol Biol Phys 82:58–66PubMedCrossRefGoogle Scholar
  94. 94.
    Vredenburgh JJ, Desjardins A, Reardon DA, et al (2011) The addition of bevacizumab to standard radiation therapy and temozolomide followed by bevacizumab, temozolomide, and irinotecan for newly diagnosed glioblastoma. Clin Cancer Res 17:4119–24PubMedPubMedCentralCrossRefGoogle Scholar
  95. 95.
    Wen PY, Macdonald DR, Reardon DA, et al (2010) Updated response assessment criteria for high-grade gliomas: Response assessment in neuro-oncology working group. J Clin Oncol 28:1963–1972PubMedCrossRefGoogle Scholar
  96. 96.
    Chinot OL, Macdonald DR, Abrey LE, Zahlmann G, Kerloeguen Y, Cloughesy TF (2013) Response assessment criteria for glioblastoma: practical adaptation and implementation in clinical trials of antiangiogenic therapy. Curr Neurol Neurosci Rep 13:347PubMedPubMedCentralCrossRefGoogle Scholar
  97. 97.
    Hegi ME, Diserens A-C, Gorlia T, et al (2005) MGMT gene silencing and benefit from temozolomide in glioblastoma. N Engl J Med 352:997–1003PubMedCrossRefGoogle Scholar
  98. 98.
    DeLay M, Jahangiri A, Carbonell WS, Hu Y-L, Tsao S, Tom MW, Paquette J, Tokuyasu TA, Aghi MK (2012) Microarray analysis verifies two distinct phenotypes of glioblastomas resistant to antiangiogenic therapy. Clin Cancer Res 18:2930–42PubMedPubMedCentralCrossRefGoogle Scholar
  99. 99.
    Lu KV, Bergers G (2013) Mechanisms of evasive resistance to anti-VEGF therapy in glioblastoma. CNS Oncol 2:49–65PubMedPubMedCentralCrossRefGoogle Scholar
  100. 100.
    Casanovas O, Hicklin DJ, Bergers G, Hanahan D (2005) Drug resistance by evasion of antiangiogenic targeting of VEGF signaling in late-stage pancreatic islet tumors. Cancer Cell 8:299–309PubMedCrossRefGoogle Scholar
  101. 101.
    Rigamonti N, Kadioglu E, Keklikoglou I, Rmili CW, Leow CC, de Palma M (2014) Role of angiopoietin-2 in adaptive tumor resistance to VEGF signaling blockade. Cell Rep 8:696–706PubMedCrossRefGoogle Scholar
  102. 102.
    Huang D, Ding Y, Zhou M, Rini BI, Petillo D, Qian C, Kahnoski R, Futreal PA, Furge KA, Teh BT (2010) Interleukin-8 mediates resistance to antiangiogenic agent sunitinib in renal cell carcinoma. Cancer Res 70:1063–71PubMedPubMedCentralCrossRefGoogle Scholar
  103. 103.
    Kloepper J, Riedemann L, Amoozgar Z, et al (2016) Ang-2/VEGF bispecific antibody reprograms macrophages and resident microglia to anti-tumor phenotype and prolongs glioblastoma survival. Proc Natl Acad Sci USA 113:4476–4481PubMedPubMedCentralCrossRefGoogle Scholar
  104. 104.
    Peterson TE, Kirkpatrick ND, Huang Y, et al (2016) Dual inhibition of Ang-2 and VEGF receptors normalizes tumor vasculature and prolongs survival in glioblastoma by altering macrophages. Proc Natl Acad Sci USA 113(16):440–5CrossRefGoogle Scholar
  105. 105.
    Park J-S, Kim I-K, Han S, et al (2016) Normalization of tumor vessels by Tie2 activation and Ang2 inhibition enhances drug delivery and produces a favorable tumor microenvironment. Cancer Cell 30:953–967PubMedCrossRefGoogle Scholar
  106. 106.
    Sitohy B, Nagy JA, Jaminet SCS, Dvorak HF (2011) Tumor-surrogate blood vessel subtypes exhibit differential susceptibility to anti-VEGF therapy. Cancer Res 71:7021–7028PubMedPubMedCentralCrossRefGoogle Scholar
  107. 107.
    Benjamin LE, Golijanin D, Itin A, Pode D, Keshet E (1999) Selective ablation of immature blood vessels in established human tumors follows vascular endothelial growth factor withdrawal. J Clin Invest 103:159–165PubMedPubMedCentralCrossRefGoogle Scholar
  108. 108.
    Piao Y, Liang J, Holmes L, Henry V, Sulman E, De Groot JF (2013) Acquired resistance to anti-VEGF therapy in glioblastoma is associated with a mesenchymal transition. Clin Cancer Res 19:4392–4403PubMedCrossRefGoogle Scholar
  109. 109.
    Lu K V, Chang JP, Parachoniak CA, et al (2012) VEGF inhibits tumor cell invasion and mesenchymal transition through a MET/VEGFR2 complex. Cancer Cell 22:21–35PubMedPubMedCentralCrossRefGoogle Scholar
  110. 110.
    Jahangiri A, De Lay M, Miller LM, et al (2013) Gene expression profile identifies tyrosine kinase c-Met as a targetable mediator of antiangiogenic therapy resistance. Clin Cancer Res 19:1773–83PubMedPubMedCentralCrossRefGoogle Scholar
  111. 111.
    Lucio-Eterovic AK, Piao Y, De Groot JF (2009) Mediators of glioblastoma resistance and invasion during antivascular endothelial growth factor therapy. Clin Cancer Res 15:4589–4599PubMedCrossRefGoogle Scholar
  112. 112.
    Huang Y, Goel S, Duda DG, Fukumura D, Jain RK (2013) Vascular normalization as an emerging strategy to enhance cancer immunotherapy. Cancer Res 73:2943–2948PubMedPubMedCentralCrossRefGoogle Scholar
  113. 113.
    De Groot JF, Piao Y, Tran H, et al (2011) Myeloid biomarkers associated with glioblastoma response to anti-VEGF therapy with aflibercept. Clin Cancer Res 17:4872–4881PubMedPubMedCentralCrossRefGoogle Scholar
  114. 114.
    Shojaei F, Wu X, Qu X, Kowanetz M, Yu L, Tan M, Meng YG, Ferrara N (2009) G-CSF-initiated myeloid cell mobilization and angiogenesis mediate tumor refractoriness to anti-VEGF therapy in mouse models. Proc Natl Acad Sci USA 106:6742–6747PubMedPubMedCentralCrossRefGoogle Scholar
  115. 115.
    Chung AS, Wu X, Zhuang G, et al (2013) An interleukin-17-mediated paracrine network promotes tumor resistance to anti-angiogenic therapy. Nat Med 19:1114–1123PubMedCrossRefGoogle Scholar
  116. 116.
    Tripathi C, Tewari BN, Kanchan RK, Baghel KS, Nautiyal N, Shrivastava R, Kaur H, Bhatt MLB, Bhadauria S (2014) Macrophages are recruited to hypoxic tumor areas and acquire a pro-angiogenic M2-polarized phenotype via hypoxic cancer cell derived cytokines Oncostatin M and Eotaxin. Oncotarget 5:5350–68PubMedPubMedCentralCrossRefGoogle Scholar
  117. 117.
    Scholz A, Harter PN, Cremer S, et al (2015) Endothelial cell-derived angiopoietin- 2 is a therapeutic target in treatment-naive and bevacizumab-resistant glioblastoma. EMBO Mol Med 8(1):39–57PubMedCentralCrossRefGoogle Scholar
  118. 118.
    Buchroithner J, Pichler J, Marosi C, et al (2014) Vascular endothelia growth factor targeted therapy may improve the effect of dendritic cell-based cancer immune therapy. Int J Clin Pharmacol Ther 52:76–7PubMedCrossRefGoogle Scholar
  119. 119.
    Reardon DA, Schuster J, Tran DD, et al (2015) ReACT: Long-term survival from a randomized phase II study of rindopepimut (CDX-110) plus bevacizumab in relapsed glioblastoma. J Clin Oncol 33:abstr 2009Google Scholar
  120. 120.
    Shrimali RK, Yu Z, Theoret MR, Chinnasamy D, Restifo NP, Rosenberg SA (2010) Antiangiogenic agents can increase lymphocyte infiltration into tumor and enhance the effectiveness of adoptive immunotherapy of cancer. Cancer Res 70:6171–80PubMedPubMedCentralCrossRefGoogle Scholar
  121. 121.
    Sulman EP, Won M, Blumenthal DT, et al (2013) Molecular predictors of outcome and response to bevacizumab (BEV) based on analysis of RTOG 0825, a phase III trial comparing chemoradiation (CRT) with and without BEV in patients with newly diagnosed glioblastoma (GBM). J Clin Oncol 31:LBA2010CrossRefGoogle Scholar
  122. 122.
    Sathornsumetee S, Cao Y, Marcello JE, Herndon JE, McLendon RE, Desjardins A, Friedman HS, Dewhirst MW, Vredenburgh JJ, Rich JN (2008) Tumor angiogenic and hypoxic profiles predict radiographic response and survival in malignant astrocytoma patients treated with bevacizumab and irinotecan. J Clin Oncol 26:271–8PubMedPubMedCentralCrossRefGoogle Scholar
  123. 123.
    Lu-Emerson C, Snuderl M, Kirkpatrick ND, et al (2013) Increase in tumor-associated macrophages after antiangiogenic therapy is associated with poor survival among patients with recurrent glioblastoma. Neuro Oncol 15:1079–1087PubMedPubMedCentralCrossRefGoogle Scholar
  124. 124.
    Chen C, Huang R, MacLean A, Muzikansky A, Mukundan S, Wen PY, Norden AD (2013) Recurrent high-grade glioma treated with bevacizumab: Prognostic value of MGMT methylation, EGFR status and pretreatment MRI in determining response and survival. J Neurooncol 115:267–276PubMedCrossRefGoogle Scholar
  125. 125.
    Lv S, Teugels E, Sadones J, et al (2011) Correlation between IDH1 gene mutation status and survival of patients treated for recurrent glioma. Anticancer Res 31:4457–4463PubMedGoogle Scholar
  126. 126.
    Batchelor TT, Gerstner ER, Emblem KE, et al (2013) Improved tumor oxygenation and survival in glioblastoma patients who show increased blood perfusion after cediranib and chemoradiation. Proc Natl Acad Sci USA 110:19059–64PubMedPubMedCentralCrossRefGoogle Scholar
  127. 127.
    Duda DG, Willett CG, Ancukiewicz M, et al (2010) Plasma soluble VEGFR-1 is a potential dual biomarker of response and toxicity for bevacizumab with chemoradiation in locally advanced rectal cancer. Oncologist 15:577–583PubMedPubMedCentralCrossRefGoogle Scholar
  128. 128.
    Duda DG, Kozin S V., Kirkpatrick ND, Xu L, Fukumura D, Jain RK (2011) CXCL12 (SDF1α)-CXCR4/CXCR7 pathway inhibition: An emerging sensitizer for anticancer therapies? Clin Cancer Res 17:2074–2080PubMedPubMedCentralCrossRefGoogle Scholar
  129. 129.
    Tabouret E, Boudouresque F, Barrie M, et al (2014) Association of matrix metalloproteinase 2 plasma level with response and survival in patients treated with bevacizumab for recurrent high-grade glioma. Neuro Oncol 16:392–399PubMedCrossRefGoogle Scholar
  130. 130.
    De Groot JF, Lamborn KR, Chang SM, et al (2011) Phase II study of aflibercept in recurrent malignant glioma: A North American brain tumor consortium study. J Clin Oncol 29:2689–2695PubMedPubMedCentralCrossRefGoogle Scholar
  131. 131.
    Sorensen AG, Batchelor TT, Zhang W-T, et al (2009) A “vascular normalization index” as potential mechanistic biomarker to predict survival after a single dose of cediranib in recurrent glioblastoma patients. Cancer Res 69:5296–5300PubMedPubMedCentralCrossRefGoogle Scholar
  132. 132.
    Pope WB, Kim HJ, Huo J, et al (2009) Recurrent glioblastoma multiforme: ADC histogram analysis predicts response to bevacizumab treatment. Radiology 252:182–189PubMedCrossRefGoogle Scholar
  133. 133.
    Kothari PD, White NS, Farid N, Chung R, Kuperman JM, Girard HM, Shankaranarayanan A, Kesari S, McDonald CR, Dale AM (2013) Longitudinal restriction spectrum imaging is resistant to pseudoresponse in patients with high-grade gliomas treated with bevacizumab. AJNR Am J Neuroradiol 34:1752–7PubMedPubMedCentralCrossRefGoogle Scholar
  134. 134.
    Piludu F, Marzi S, Pace A, Villani V, Fabi A, Carapella CM, Terrenato I, Antenucci A, Vidiri A (2015) Early biomarkers from dynamic contrast-enhanced magnetic resonance imaging to predict the response to antiangiogenic therapy in high-grade gliomas. Neuroradiology 57:1269–1280PubMedCrossRefGoogle Scholar
  135. 135.
    O’Connor JPB, Jackson A, Parker GJM, Roberts C, Jayson GC (2012) Dynamic contrast-enhanced MRI in clinical trials of antivascular therapies. Nat Rev Clin Oncol 9:167–177PubMedCrossRefGoogle Scholar
  136. 136.
    Emblem KE, Mouridsen K, Bjornerud A, et al (2013) Vessel architectural imaging identifies cancer patient responders to anti-angiogenic therapy. Nat Med 19:1178–83PubMedPubMedCentralCrossRefGoogle Scholar
  137. 137.
    Chen W, Delaloye S, Silverman DHS, et al (2007) Predicting treatment response of malignant gliomas to bevacizumab and irinotecan by imaging proliferation with [18F] fluorothymidine positron emission tomography: A pilot study. J Clin Oncol 25:4714–4721PubMedCrossRefGoogle Scholar
  138. 138.
    Harris RJ, Cloughesy TF, Pope WB, Nghiemphu PL, Lai A, Zaw T, Czernin J, Phelps ME, Chen W, Ellingson BM (2012) 18F-FDOPA and 18F-FLT positron emission tomography parametric response maps predict response in recurrent malignant gliomas treated with bevacizumab. Neuro Oncol 14:1079–1089PubMedPubMedCentralCrossRefGoogle Scholar
  139. 139.
    Sorensen AG, Emblem KE, Polaskova P, et al (2012) Increased survival of glioblastoma patients who respond to antiangiogenic therapy with elevated blood perfusion. Cancer Res 72:402–407PubMedCrossRefGoogle Scholar
  140. 140.
    Lorgis V, Maura G, Coppa G, Hassani K, Taillandier L, Chauffert B, Apetoh L, Ladoire S, Ghiringhelli F (2012) Relation between bevacizumab dose intensity and high-grade glioma survival: A retrospective study in two large cohorts. J Neurooncol 107:351–358PubMedCrossRefGoogle Scholar
  141. 141.
    Levin VA, Mendelssohn ND, Chan J, Stovall MC, Peak SJ, Yee JL, Hui RL, Chen DM (2015) Impact of bevacizumab administered dose on overall survival of patients with progressive glioblastoma. J Neurooncol 122:145–150PubMedCrossRefGoogle Scholar
  142. 142.
    Weathers S-P, Han X, Liu DD, et al (2016) A randomized phase II trial of standard dose bevacizumab versus low dose bevacizumab plus lomustine (CCNU) in adults with recurrent glioblastoma. J Neurooncol 129:487–494Google Scholar
  143. 143.
    Reardon DA, Herndon JE, Peters KB, et al (2012) Bevacizumab continuation beyond initial bevacizumab progression among recurrent glioblastoma patients. Br J Cancer 107:1481–7PubMedPubMedCentralCrossRefGoogle Scholar
  144. 144.
    Tang TC, Man S, Xu P, Francia G, Hashimoto K, Emmenegger U, Kerbel RS (2010) Development of a resistance-like phenotype to sorafenib by human hepatocellular carcinoma cells is reversible and can be delayed by metronomic UFT chemotherapy. Neoplasia 12:928–940PubMedPubMedCentralCrossRefGoogle Scholar
  145. 145.
    Bennouna J, Sastre J, Arnold D, et al (2013) Continuation of bevacizumab after first progression in metastatic colorectal cancer (ML18147): A randomised phase 3 trial. Lancet Oncol 14:29–37PubMedCrossRefGoogle Scholar
  146. 146.
    von Minckwitz G, Puglisi F, Cortes J, et al (2014) Bevacizumab plus chemotherapy versus chemotherapy alone as second-line treatment for patients with HER2-negative locally recurrent or metastatic breast cancer after first-line treatment with bevacizumab plus chemotherapy (TANIA): an open-label, randomised. Lancet Oncol 15:1269–78CrossRefGoogle Scholar

Copyright information

© The American Society for Experimental NeuroTherapeutics, Inc. 2017

Authors and Affiliations

  • Nancy Wang
    • 1
  • Rakesh K. Jain
    • 2
  • Tracy T. Batchelor
    • 1
    • 2
    • 3
  1. 1.Stephen E. and Catherine Pappas Center for Neuro-OncologyMassachusetts General HospitalBostonUSA
  2. 2.Department of Radiation OncologyMassachusetts General HospitalBostonUSA
  3. 3.Department of Hematology/OncologyMassachusetts General HospitalBostonUSA

Personalised recommendations