Neurotherapeutics

, Volume 14, Issue 1, pp 78–90 | Cite as

Axonal Excitability in Amyotrophic Lateral Sclerosis

Axonal Excitability in ALS
  • Susanna B. Park
  • Matthew C. Kiernan
  • Steve Vucic
Review

Abstract

Axonal excitability testing provides in vivo assessment of axonal ion channel function and membrane potential. Excitability techniques have provided insights into the pathophysiological mechanisms underlying the development of neurodegeneration and clinical features of amyotrophic lateral sclerosis (ALS) and related neuromuscular disorders. Specifically, abnormalities of Na+ and K+ conductances contribute to development of membrane hyperexcitability in ALS, thereby leading to symptom generation of muscle cramps and fasciculations, in addition to promoting a neurodegenerative cascade via Ca2+-mediated processes. Modulation of axonal ion channel function in ALS has resulted in significant symptomatic improvement that has been accompanied by stabilization of axonal excitability parameters. Separately, axonal ion channel dysfunction evolves with disease progression and correlates with survival, thereby serving as a potential therapeutic biomarker in ALS. The present review provides an overview of axonal excitability techniques and the physiological mechanisms underlying membrane excitability, with a focus on the role of axonal ion channel dysfunction in motor neuron disease and related neuromuscular diseases.

Keywords

Amyotrophic lateral sclerosis axonal excitability hyperexcitability neuromuscular disorders ion channels neurodegeneration 

Supplementary material

13311_2016_492_MOESM1_ESM.pdf (1.2 mb)
ESM 1(PDF 1224 kb)

References

  1. 1.
    Burke D, Kiernan MC, Bostock H. Excitability of human axons. Clin Neurophysiol 2001;112:1575–1585.PubMedCrossRefGoogle Scholar
  2. 2.
    Bostock H, Cikurel K, Burke D. Threshold tracking techniques in the study of human peripheral nerve. Muscle Nerve 1998;21:137–158.PubMedCrossRefGoogle Scholar
  3. 3.
    Krishnan AV, Lin CS, Park SB, Kiernan MC. Axonal ion channels from bench to bedside: a translational neuroscience perspective. Prog Neurobiol 2009;89:288–313.PubMedCrossRefGoogle Scholar
  4. 4.
    Kiernan MC, Burke, D. Threshold electronus and the assessment of nerve excitability in amyotrophic lateral sclerosis. In: Eisen A, editor. Clinical Neurophysiology of Motor Neuron Diseases. Amsterdam: Elsevier; 2004. p. 359–366.CrossRefGoogle Scholar
  5. 5.
    Bostock H, Sharief MK, Reid G, Murray NMF. Axonal ion channel dysfunction in amyotrophic lateral sclerosis. Brain 1995;118:217–225.PubMedCrossRefGoogle Scholar
  6. 6.
    Vucic S, Kiernan MC. Axonal excitability properties in amyotrophic lateral sclerosis. Clin Neurophysiol 2006;117:1458–1466.PubMedCrossRefGoogle Scholar
  7. 7.
    Mogyoros I, Kiernan M, Burke D, Bostock H. Strength-duration properties of sensory and motor axons in amyotrophic lateral sclerosis. Brain 1998;121:851–859.PubMedCrossRefGoogle Scholar
  8. 8.
    Kanai K, Kuwabara S, Misawa S, et al. Altered axonal excitability properties in amyotrophic lateral sclerosis: impaired potassium channel function related to disease stage. Brain 2006;129:953–962.PubMedCrossRefGoogle Scholar
  9. 9.
    Geevasinga N, Menon P, Howells J, Nicholson GA, Kiernan MC, Vucic S. Axonal ion channel dysfunction in c9orf72 familial amyotrophic lateral sclerosis. JAMA Neurol 2015;72:49–57.PubMedCrossRefGoogle Scholar
  10. 10.
    Tamura N, Kuwabara S, Misawa S, et al. Increased nodal persistent Na+ currents in human neuropathy and motor neuron disease estimated by latent addition. Clin Neurophysiol 2006;117:2451–2458.PubMedCrossRefGoogle Scholar
  11. 11.
    Weiss MD, Macklin EA, Simmons Z, et al. A randomized trial of mexiletine in ALS: safety and effects on muscle cramps and progression. Neurology 2016;86:1474–1481.PubMedCrossRefGoogle Scholar
  12. 12.
    Farrar MA, Vucic S, Johnston HM, du Sart D, Kiernan MC. Pathophysiological insights derived by natural history and motor function of spinal muscular atrophy. J Pediatr 2013;162:155–159.PubMedCrossRefGoogle Scholar
  13. 13.
    Vucic S, Nicholson GA, Kiernan MC. Cortical excitability in hereditary motor neuronopathy with pyramidal signs: comparison with ALS. J Neurol Neurosurg Psychiatry 2010;81:97–100.PubMedCrossRefGoogle Scholar
  14. 14.
    Kiernan MC, Guglielmi JM, Kaji R, Murray NM, Bostock H. Evidence for axonal membrane hyperpolarization in multifocal motor neuropathy with conduction block. Brain 2002;125:664–675.PubMedCrossRefGoogle Scholar
  15. 15.
    Kiernan MC, Hart IK, Bostock H. Excitability properties of motor axons in patients with spontaneous motor unit activity. J Neurol Neurosurg Psychiatry 2001;70:56–64.PubMedPubMedCentralCrossRefGoogle Scholar
  16. 16.
    Kiernan MC, Burke D, Andersen KV, Bostock H. Multiple measures of axonal excitability: a new approach in clinical testing. Muscle Nerve 2000;23:399–409.PubMedCrossRefGoogle Scholar
  17. 17.
    Kiernan MC, Lin CS, Andersen KV, Murray NM, Bostock H. Clinical evaluation of excitability measures in sensory nerve. Muscle Nerve 2001;24:883–892.PubMedCrossRefGoogle Scholar
  18. 18.
    Bostock H, Baker M, Grafe P, Reid G. Changes in excitability and accommodation of human motor axons following brief periods of ischaemia. J Physiol (Lond) 1991;441:513–535.CrossRefGoogle Scholar
  19. 19.
    Kiernan MC, Isbister GK, Lin CS, Burke D, Bostock H. Acute tetrodotoxin-induced neurotoxicity after ingestion of puffer fish. Ann Neurol 2005;57:339–348.PubMedCrossRefGoogle Scholar
  20. 20.
    Howells J, Trevillion L, Bostock H, Burke D. The voltage dependence of I(h) in human myelinated axons. J Physiol 2012;590:1625–1640.PubMedPubMedCentralCrossRefGoogle Scholar
  21. 21.
    Baker M, Bostock H. Depolarization changes the mechanism of accommodation in rat and human motor axons. J Physiol (Lond) 1989;411:545–561.PubMedCentralCrossRefGoogle Scholar
  22. 22.
    Bostock H, Burke D, Hales JP. Differences in behaviour of sensory and motor axons following release of ischaemia. Brain 1994;117:225–234.PubMedCrossRefGoogle Scholar
  23. 23.
    Mogyoros I, Kiernan MC, Burke D, Bostock H. Excitability changes in human sensory and motor axons during hyperventilation and ischaemia. Brain 1997;120:317–325.PubMedCrossRefGoogle Scholar
  24. 24.
    Grosskreutz J, Lin C, Mogyoros I, Burke D. Changes in excitability indices of cutaneous afferents produced by ischaemia in human subjects. J Physiol (Lond) 1999;518:301–314.CrossRefGoogle Scholar
  25. 25.
    Grosskreutz J, Lin CS, Mogyoros I, Burke D. Ischaemic changes in refractoriness of human cutaneous afferents under threshold-clamp conditions. J Physiol (Lond) 2000;523:807–815.CrossRefGoogle Scholar
  26. 26.
    Bostock H. The strength-duration relationship for excitation of myelinated nerve: computed dependence on membrane parameters. J Physiol (Lond) 1983;341:59–74.CrossRefGoogle Scholar
  27. 27.
    Mogyoros I, Kiernan MC, Burke D. Strength-duration properties of human peripheral nerve. Brain 1996;119:439–447.PubMedCrossRefGoogle Scholar
  28. 28.
    Mogyoros I, Lin C, Dowla S, Grosskreutz J, Burke D. Strength-duration properties and their voltage dependence at different sites along the median nerve. Clin Neurophysiol 1999;110:1618–1624.PubMedCrossRefGoogle Scholar
  29. 29.
    Weiss G. Sur la possibilité de rendre comparables entre eux les appareils servant l'excitation électrique. Arch Ital Biol 1901;35:413–446.Google Scholar
  30. 30.
    Bostock H, Rothwell JC. Latent addition in motor and sensory fibres of human peripheral nerve. J Physiol (Lond) 1997;498:277–294.CrossRefGoogle Scholar
  31. 31.
    French CR, Sah P, Buckett KJ, Gage PW. A voltage-dependent persistent sodium current in mammalian hippocampal neurons. J Gen Physiol 1990;95:1139–1157.PubMedCrossRefGoogle Scholar
  32. 32.
    Crill WE. Persistent sodium current in mammalian central neurons. Annu Rev Physiol 1996;58:349–362.PubMedCrossRefGoogle Scholar
  33. 33.
    Catterall WA. From ionic currents to molecular mechanisms: the structure and function of voltage-gated sodium channels. Neuron 2000;26:13–25.PubMedCrossRefGoogle Scholar
  34. 34.
    Catterall WA, Goldin AL, Waxman SG. International Union of Pharmacology. XLVII. Nomenclature and structure-function relationships of voltage-gated sodium channels. Pharmacol Rev 2005;57:397–409.PubMedCrossRefGoogle Scholar
  35. 35.
    Catterall WA. Voltage-gated sodium channels at 60: structure, function and pathophysiology. J Physiol 2012;590:2577–2589.PubMedPubMedCentralCrossRefGoogle Scholar
  36. 36.
    Goldin AL. Resurgence of sodium channel research. Annu Rev Physiol 2001;63:871–894.PubMedCrossRefGoogle Scholar
  37. 37.
    Brismar T. Electrical properties of isolated demyelinated rat nerve fibres. Acta Physiol Scand 1981;113:161–166.PubMedCrossRefGoogle Scholar
  38. 38.
    Mogyoros I, Kiernan MC, Gracies JM, Burke D. The effect of stimulus duration on the latency of submaximal nerve volleys. Muscle Nerve 1996;19:1354–1356.PubMedCrossRefGoogle Scholar
  39. 39.
    Kiernan MC, Krishnan AV, Lin CS, Burke D, Berkovic SF. Mutation in the Na + channel subunit SCN1B produces paradoxical changes in peripheral nerve excitability. Brain 2005;128:1841–1846.PubMedCrossRefGoogle Scholar
  40. 40.
    Kiernan MC, Mogyoros I, Burke D. Changes in excitability and impulse transmission following prolonged repetitive activity in normal subjects and patients with a focal nerve lesion. Brain 1996;119:2029–2037.PubMedCrossRefGoogle Scholar
  41. 41.
    Hodgkin A, Huxley A. A quantitative descirption of membrane current and its application to conduction and excitation in nerve. J Physiol (Lond) 1952:500–544.Google Scholar
  42. 42.
    Scholz A, Reid G, Vogel W, Bostock H. Ion channels in human axons. J Neurophysiol 1993;70:1274–1279.PubMedGoogle Scholar
  43. 43.
    Burke D, Kiernan M, Mogyoros I, Bostock H. Susceptibility to conduction block: differences in the biophysical properties of cutaneous afferents and motor axons. Physiology of ALS and Related Diseases 1997:43–53.Google Scholar
  44. 44.
    Kiernan MC, Cikurel K, Bostock H. Effects of temperature on the excitability properties of human motor axons. Brain 2001;124:816–825.PubMedCrossRefGoogle Scholar
  45. 45.
    Barrett EF, Barrett JN. Intracellular recording from vertebrate myelinated axons: mechanism of the depolarizing afterpotential. J Physiol (Lond) 1982;323:117–144.CrossRefGoogle Scholar
  46. 46.
    Baker M, Bostock H, Grafe P, Martius P. Function and distribution of three types of rectifying channel in rat spinal root myelinated axons. J Physiol (Lond) 1987;383:45–67.CrossRefGoogle Scholar
  47. 47.
    McIntyre CC, Richardson AG, Grill WM. Modeling the excitability of mammalian nerve fibers: influence of afterpotentials on the recovery cycle. J Neurophysiol 2002;87:995–1006.PubMedGoogle Scholar
  48. 48.
    Kiernan MC, Bostock H. Effects of membrane polarization and ischaemia on the excitability properties of human motor axons. Brain 2000;123:2542–2551.PubMedCrossRefGoogle Scholar
  49. 49.
    Krishnan AV, Phoon RK, Pussell BA, Charlesworth JA, Bostock H, Kiernan MC. Altered motor nerve excitability in end-stage kidney disease. Brain 2005;128:2164–2174.PubMedCrossRefGoogle Scholar
  50. 50.
    Kiernan MC, Walters RJ, Andersen KV, Taube D, Murray NM, Bostock H. Nerve excitability changes in chronic renal failure indicate membrane depolarization due to hyperkalaemia. Brain 2002;125:1366–1378.PubMedCrossRefGoogle Scholar
  51. 51.
    Bostock H, Baker M. Evidence for two types of potassium channel in human motor axons in vivo. Brain Res 1988;462:354–358.PubMedCrossRefGoogle Scholar
  52. 52.
    Pape HC. Queer current and pacemaker: the hyperpolarization-activated cation current in neurons. Annu Rev Physiol 1996;58:299–327.PubMedCrossRefGoogle Scholar
  53. 53.
    Vagg R, Mogyoros I, Kiernan MC, Burke D. Activity-dependent hyperpolarization of human motor axons produced by natural activity. J Physiol 1998;507:919–925.PubMedPubMedCentralCrossRefGoogle Scholar
  54. 54.
    Lin CS, Kiernan MC, Burke D, Bostock H. Assessment of nerve excitability properties in peripheral nerve disease. In: Kimura J, editor. Handbook of Clinical Neurophysioloy. 7. Amsterdam: Elsevier; 2006. p. 381–403.Google Scholar
  55. 55.
    Roper J, Schwarz JR. Heterogeneous distribution of fast and slow potassium channels in myelinated rat nerve fibres. J Physiol (Lond) 1989;416:93–110.CrossRefGoogle Scholar
  56. 56.
    Vucic S, Kiernan MC. Upregulation of persistent sodium conductances in familial ALS. J Neurol Neurosurg Psychiatry 2010;81:222–227.PubMedCrossRefGoogle Scholar
  57. 57.
    Nakata M, Baba H, Kanai K, et al. Changes in Na(+) channel expression and nodal persistent Na(+) currents associated with peripheral nerve regeneration in mice. Muscle Nerve 2008;37:721–730.PubMedCrossRefGoogle Scholar
  58. 58.
    Cheah BC, Lin CSY, Park SB, Vucic S, Krishnan AV, Kiernan MC. Progressive axonal dysfunction and clinical impairment in amyotrophic lateral sclerosis. Clin Neurophysiol 2012;123:2460–2467.PubMedCrossRefGoogle Scholar
  59. 59.
    Layzer RB. The origin of muscle fasciculations and cramps. Muscle Nerve 1994;17:1243–1249.PubMedCrossRefGoogle Scholar
  60. 60.
    Kuo JJ, Siddique T, Fu R, Heckman CJ. Increased persistent Na(+) current and its effect on excitability in motoneurones cultured from mutant SOD1 mice. J Physiol (Lond) 2005;563:843–854.CrossRefGoogle Scholar
  61. 61.
    Kanai K, Kuwabara S, Arai K, Sung JY, Ogawara K, Hattori T. Muscle cramp in Machado-Joseph disease: altered motor axonal excitability properties and mexiletine treatment. Brain 2003;126:965–973.PubMedCrossRefGoogle Scholar
  62. 62.
    Vucic S, Kiernan MC. Novel threshold tracking techniques suggest that cortical hyperexcitability is an early feature of motor neuron disease. Brain 2006;129:2436–2446.PubMedCrossRefGoogle Scholar
  63. 63.
    Shibuya K, Misawa S, Nasu S, et al. Split hand syndrome in amyotrophic lateral sclerosis: different excitability changes in the thenar and hypothenar motor axons. J Neurol Neurosurg Psychiatry 2013;84:969–972.PubMedCrossRefGoogle Scholar
  64. 64.
    Vucic S, Kiernan MC. Abnormalities in cortical and peripheral excitability in flail arm variant amyotrophic lateral sclerosis. J Neurol Neurosurg Psychiatry 2007;78:849–852.PubMedPubMedCentralCrossRefGoogle Scholar
  65. 65.
    Vucic S, Nicholson GA, Kiernan MC. Cortical hyperexcitability may precede the onset of familial amyotrophic lateral sclerosis. Brain 2008;131:1540–1550.PubMedCrossRefGoogle Scholar
  66. 66.
    Wilbourn AJ. The “split hand syndrome”. Muscle Nerve 2000;23:138.PubMedCrossRefGoogle Scholar
  67. 67.
    Kuwabara S, Sonoo M, Komori T, et al. Dissociated small hand muscle atrophy in amyotrophic lateral sclerosis: frequency, extent, and specificity. Muscle Nerve 2008;37:426–430.PubMedCrossRefGoogle Scholar
  68. 68.
    Menon P, Kiernan MC, Yiannikas C, Stroud J, Vucic S. Split-hand index for the diagnosis of amyotrophic lateral sclerosis. Clin Neurophysiol 2013;124:410–416.PubMedCrossRefGoogle Scholar
  69. 69.
    Menon P, Kiernan MC, Vucic S. ALS pathophysiology: Insights form the split-hand phenomenon. Clin Neurophysiol 2014;125:186–193.PubMedCrossRefGoogle Scholar
  70. 70.
    Urbani A, Belluzzi O. Riluzole inhibits the persistent sodium current in mammalian CNS neurons. Eur J Neurosci 2000;12:3567–3574.PubMedCrossRefGoogle Scholar
  71. 71.
    Saxena S, Roselli F, Singh K, et al. Neuroprotection through excitability and mTOR required in ALS motoneurons to delay disease and extend survival. Neuron 2013;80:80–96.PubMedCrossRefGoogle Scholar
  72. 72.
    Park SB, Vucic S, Cheah BC, et al. Flecainide in Amyotrophic Lateral Sclerosis as a Neuroprotective Strategy (FANS): a randomized placebo-controlled trial. EBioMedicine 2015;2:1916–1922.PubMedPubMedCentralCrossRefGoogle Scholar
  73. 73.
    Shibuya K, Misawa S, Kimura H, et al. A single blind randomized controlled clinical trial of mexiletine in amyotrophic lateral sclerosis: efficacy and safety of sodium channel blocker phase II trial. Amyotroph Lateral Scler Frontotemporal Degener 2015;16:353–358.PubMedCrossRefGoogle Scholar
  74. 74.
    Kanai K, Shibuya K, Sato Y, et al. Motor axonal excitability properties are strong predictors for survival in amyotrophic lateral sclerosis. J Neurol Neurosurg Psychiatry 2012;83:734–738.PubMedCrossRefGoogle Scholar
  75. 75.
    Shibuya K, Misawa S, Kimura H, et al. Increased motor axonal persistent sodium currents predict rapid functional declines in amyotrophic lateral sclerosis. Neurol Clin Neurosci 2016; 4:108–111.CrossRefGoogle Scholar
  76. 76.
    Noto Y, Kanai K, Misawa S, et al. Distal motor axonal dysfunction in amyotrophic lateral sclerosis. J Neurol Sci 2011;302:58–62.PubMedCrossRefGoogle Scholar
  77. 77.
    Horn S, Quasthoff S, Grafe P, Bostock H, Renner R, Schrank B. Abnormal axonal inward rectification in diabetic neuropathy. Muscle Nerve 1996;19:1268–1275.PubMedCrossRefGoogle Scholar
  78. 78.
    Shibuta Y, Shimatani Y, Nodera H, Izumi Y, Kaji R. Increased variability of axonal excitability in amyotrophic lateral sclerosis. Clin Neurophysiol 2013;124:2046–2053.PubMedCrossRefGoogle Scholar
  79. 79.
    Nakata M, Kuwabara S, Kanai K, et al. Distal excitability changes in motor axons in amyotrophic lateral sclerosis. Clin Neurophysiol 2006;117:1444–1448.PubMedCrossRefGoogle Scholar
  80. 80.
    Roth G. The origin of fasciculations. Ann Neurol 1982;12:542–547.PubMedCrossRefGoogle Scholar
  81. 81.
    Shibuta Y, Nodera H, Nodera A, et al. Utility of recovery cycle with two conditioning pulses for detection of impaired axonal slow potassium current in ALS. Clin Neurophysiol 2010;121:2117–2120.PubMedCrossRefGoogle Scholar
  82. 82.
    Jiang Y, Yamamoto M, Kobayashi Y, et al. Gene expression profile of spinal motor neurons in sporadic amyotrophic lateral sclerosis. Ann Neurol 2005:236–251.Google Scholar
  83. 83.
    Shibuya K, Misawa S, Arai K, et al. Markedly reduced axonal potassium channel expression in human sporadic amyotrophic lateral sclerosis: an immunohistochemical study. Exp Neurol 2011;232:149–153.PubMedCrossRefGoogle Scholar
  84. 84.
    Miller TM, Layzer RB. Muscle cramps. Muscle Nerve 2005;32:431–442.PubMedCrossRefGoogle Scholar
  85. 85.
    Kiernan MC, Vucic S, Cheah BC, et al. Amyotrophic lateral sclerosis. Lancet 2011;377:942–955.PubMedCrossRefGoogle Scholar
  86. 86.
    Dodson P, Billups B, Rusznak Z, Szucs G, Barker MC, Forsythe ID. Presynaptic rat Kv1.2 channels suppress synaptic terminal hyperexcitability following action potential invasion. J Physiol 2003:550:27–33.PubMedPubMedCentralCrossRefGoogle Scholar
  87. 87.
    Vucic S, Rothstein JD, Kiernan MC. Advances in treating amyotrophic lateral sclerosis: insights from pathophysiological studies. Trends Neurosci 2014;37:433–442.PubMedCrossRefGoogle Scholar
  88. 88.
    Stys PK. Anoxic and ischemic injury of myelinated axons in CNS white matter: from mechanistic concepts to therapeutics. J Cereb Blood Flow Metab 1998;18:2–25.PubMedCrossRefGoogle Scholar
  89. 89.
    Stys PK. General mechanisms of axonal damage and its prevention. J Neurol Sci 2005;233:3–13.PubMedCrossRefGoogle Scholar
  90. 90.
    Stys PK. Sodium channel blockers as neuroprotectants in neuroinflammatory disease: a double-edged sword. Ann Neurol 2007;62:3–5.PubMedCrossRefGoogle Scholar
  91. 91.
    Waxman SG. Axonal conduction and injury in multiple sclerosis: the role of sodium channels. Nat Rev Neurosci 2006;7:932–941.PubMedCrossRefGoogle Scholar
  92. 92.
    Ellis DZ, Rabe J, Sweadner KJ. Global loss of Na,K-ATPase and its nitric oxide-mediated regulation in a transgenic mouse model of amyotrophic lateral sclerosis. J Neurosci 2003;23:43–51.PubMedGoogle Scholar
  93. 93.
    Alvarez S, Calin A, Graffmo KS, Moldovan M, Krarup C. Peripheral motor axons of SOD1(G127X) mutant mice are susceptible to activity-dependent degeneration. Neuroscience 2013;241:239–249.PubMedCrossRefGoogle Scholar
  94. 94.
    Ruegsegger C, Maharjan N, Goswami A, et al. Aberrant association of misfolded SOD1 with Na(+)/K(+)ATPase-alpha3 impairs its activity and contributes to motor neuron vulnerability in ALS. Acta Neuropathol 2016;131:427–451.PubMedCrossRefGoogle Scholar
  95. 95.
    Vucic S, Krishnan AV, Kiernan MC. Fatigue and activity dependent changes in axonal excitability in amyotrophic lateral sclerosis. J Neurol Neurosurg Psychiatry 2007;78:1202–1208.PubMedPubMedCentralCrossRefGoogle Scholar
  96. 96.
    Pieri M, Carunchio I, Curcio L, Mercuri NB, Zona C. Increased persistent sodium current determines cortical hyperexcitability in a genetic model of amyotrophic lateral sclerosis. Exp Neurol 2009;215:368–379.PubMedCrossRefGoogle Scholar
  97. 97.
    Quinlan KA. Links between electrophysiological and molecular pathology of amyotrophic lateral sclerosis. Integ Comp Biol 2011;51:913–925.CrossRefGoogle Scholar
  98. 98.
    Bensimon G, Lacomblez L, Meininger V. A controlled trial of riluzole in amyotrophic lateral sclerosis. ALS/Riluzole Study Group. N Engl J Med 1994;330:585–591.PubMedCrossRefGoogle Scholar
  99. 99.
    Lacomblez L, Bensimon G, Leigh PN, Guillet P, Meininger V. Dose-ranging study of riluzole in amyotrophic lateral sclerosis. Amyotrophic Lateral Sclerosis/Riluzole Study Group II. Lancet 1996;347:1425–1431.PubMedCrossRefGoogle Scholar
  100. 100.
    Nutini M, Spalloni A, Florenzano F, et al. Increased expression of the beta3 subunit of voltage-gated Na + channels in the spinal cord of the SOD1G93A mouse. Mol Cell Neurosci 2011;47:108–118.PubMedCrossRefGoogle Scholar
  101. 101.
    van Zundert B, Peuscher MH, Hynynen M, et al. Neonatal neuronal circuitry shows hyperexcitable disturbance in a mouse model of the adult-onset neurodegenerative disease amyotrophic lateral sclerosis. J Neurosci 2008;28:10864–10874.PubMedPubMedCentralCrossRefGoogle Scholar
  102. 102.
    Fritz E, Izaurieta P, Weiss A, et al. Mutant SOD1-expressing astrocytes release toxic factors that trigger motoneuron death by inducing hyperexcitability. J Neurophysiol 2013;109:2803–2814.PubMedPubMedCentralCrossRefGoogle Scholar
  103. 103.
    Wainger BJ, Kiskinis E, Mellin C, et al. Intrinsic membrane hyperexcitability of amyotrophic lateral sclerosis patient-derived motor neurons. Cell Rep 2014;7:1–11.PubMedPubMedCentralCrossRefGoogle Scholar
  104. 104.
    Devlin A-C, Burr K, Borooah S, et al. Human iPSC-derived motoneurons harbouring TARDBP or C9ORF72 ALS mutations are dysfunctional despite maintaining viability. Nat Commun 2015;12:6.Google Scholar
  105. 105.
    Leroy F, Lamotte d'Incamps B, Imhoff-Manuel RD, Zytnicki D. Early intrinsic hyperexcitability does not contribute to motoneuron degeneration in amyotrophic lateral sclerosis. eLife 2014;3:e04046.PubMedCentralCrossRefGoogle Scholar
  106. 106.
    Naujock M, Stanslowsky N, Bufler S, et al. 4-Aminopyridine induced activity rescues hypoexcitable motor neurons from ALS patient-derived induced pluripotent stem cells. Stem Cells 2016;34:1563–1575.PubMedCrossRefGoogle Scholar
  107. 107.
    Delestree N, Manuel M, Iglesias C, Elbasiouny SM, Heckman CJ, Zytnicki D. Adult spinal motoneurones are not hyperexcitable in a mouse model of inherited amyotrophic lateral sclerosis. J Physiol 2014;592:1687–1703.PubMedPubMedCentralCrossRefGoogle Scholar
  108. 108.
    Turner MR, Hardiman O, Benatar M, et al. Controversies and priorities in amyotrophic lateral sclerosis. Lancet Neurol 2013;12:310–322.PubMedPubMedCentralCrossRefGoogle Scholar
  109. 109.
    Vucic S, Lin CS-Y, Cheah BC, et al. Riluzole exerts central and peripheral modulating effects in amyotrophic lateral sclerosis. Brain 2013;136:1361–1370.PubMedCrossRefGoogle Scholar
  110. 110.
    Kennedy WR, Alter M, Sung JH. Progressive proximal spinal and bulbar muscular atrophy of late onset. A sex-linked recessive trait. Neurology 1968;18:671–680.PubMedCrossRefGoogle Scholar
  111. 111.
    La Spada AR, Wilson EM, Lubahn DB, Harding AE, Fischbeck KH. Androgen receptor gene mutations in X-linked spinal and bulbar muscular atrophy. Nature 1991;352:77–79.PubMedCrossRefGoogle Scholar
  112. 112.
    Gallo JM. Spinobulbar muscular atrophy (Kennedy's disease). In: A. E, editor. Clinical Neurophysiology of Motor Neuron Diseases Hanbook of Clinical Neurophysiology. 4. Amsterdam: Elsevier B.V; 2004. p. 209–214.Google Scholar
  113. 113.
    Schmidt BJ, Greenberg CR, Allingham-Hawkins DJ, Spriggs EL. Expression of X-linked bulbospinal muscular atrophy (Kennedy disease) in two homozygous women. Neurology 2002;59:770–772.PubMedCrossRefGoogle Scholar
  114. 114.
    Hirota N, Eisen A, Weber M. Complex fasciculations and their origin in amyotrophic lateral sclerosis and Kennedy's disease. Muscle Nerve 2000;23:1872–1875.PubMedCrossRefGoogle Scholar
  115. 115.
    Olney RK, Aminoff MJ, So YT. Clinical and electrodiagnostic features of X-linked recessive bulbospinal neuronopathy. Neurology 1991;41:823–828.PubMedCrossRefGoogle Scholar
  116. 116.
    Vucic S, Kiernan MC. Pathophysiological insights into motor axonal function in Kennedy's disease. Neurology 2007;69:1828–1835.PubMedCrossRefGoogle Scholar
  117. 117.
    Katsuno M, Tanaka F, Adachi H, et al. Pathogenesis and therapy of spinal and bulbar muscular atrophy (SBMA). Prog Neurobiol 2012;99:246–256.PubMedCrossRefGoogle Scholar
  118. 118.
    Lefebvre S, Burglen L, Reboullet S, et al. Identification and characterization of a spinal muscular atrophy-determining gene. Cell 1995;80:155–165.PubMedCrossRefGoogle Scholar
  119. 119.
    Zhang Z, Lotti F, Dittmar K, et al. SMN deficiency causes tissue-specific perturbations in the repertoire of snRNAs and widespread defects in splicing. Cell 2008;133:585–600.PubMedPubMedCentralCrossRefGoogle Scholar
  120. 120.
    Mentis GZ, Blivis D, Liu W, et al. Early functional impairment of sensory-motor connectivity in a mouse model of spinal muscular atrophy. Neuron 2011;69:453–467.PubMedPubMedCentralCrossRefGoogle Scholar
  121. 121.
    Hart IK, Maddison P, Newsom-Davis J, Vincent A, Mills KR. Phenotypic variants of autoimmune peripheral nerve hyperexcitability. Brain 2002;125:1887–1895.PubMedCrossRefGoogle Scholar
  122. 122.
    Hart IK, Waters C, Vincent A, et al. Autoantibodies detected to expressed K+ channels are implicated in neuromyotonia. Ann Neurol 1997;41:238–246.PubMedCrossRefGoogle Scholar
  123. 123.
    Warmolts JR, Mendell JR. Neurotonia: impulse-induced repetitive discharges in motor nerves in peripheral neuropathy. Ann Neurol 1980;7:245–250.PubMedCrossRefGoogle Scholar
  124. 124.
    Mills KR. Characteristics of fasciculations in amyotrophic lateral sclerosis and the benign fasciculation syndrome. Brain 2010;133:3458–3469.PubMedCrossRefGoogle Scholar
  125. 125.
    Maddison P, Newsom-Davis J, Mills KR. Strength-duration properties of peripheral nerve in acquired neuromyotonia. Muscle Nerve 1999;22:823–830.PubMedCrossRefGoogle Scholar
  126. 126.
    Deymeer F, Oge AE, Serdaroglu P, Yazici J, Ozdemir C, Baslo A. The use of botulinum toxin in localizing neuromyotonia to the terminal branches of the peripheral nerve. Muscle Nerve 1998;21:643–646.PubMedCrossRefGoogle Scholar
  127. 127.
    Isaacs H. A syndrome of continuous muscle-fibre activity. J Neurol Neurosurg Psychiatry 1961;24:319–325.PubMedPubMedCentralCrossRefGoogle Scholar
  128. 128.
    Lance JW, Burke D, Pollard J. Hyperexcitability of motor and sensory neurons in neuromyotonia. Ann Neurol 1979;5:523–532.PubMedCrossRefGoogle Scholar
  129. 129.
    Irani PF, Purohit AV, Wadia NH. The syndrome of continuous muscle fiber activity. Evidence to suggest proximal neurogenic causation. Acta Neurol Scand 1977;55:273–288.PubMedCrossRefGoogle Scholar
  130. 130.
    Hosokawa S, Shinoda H, Sakai T, Kato M, Kuroiwa Y. Electrophysiological study on limb myokymia in three women. J Neurol Neurosurg Psychiatry 1987;50:877–881.PubMedPubMedCentralCrossRefGoogle Scholar
  131. 131.
    Hart IK, Waters C, Newsom-Davis J. Cerebrospinal fluid and serum from acquired neuromyotonia patients seropositive for anti-potassium channel antibodies label dentate nucleus neurons. Ann Neurol 1996;40:554–555.Google Scholar
  132. 132.
    Liguori R, Vincent A, Clover L, et al. Morvan's syndrome: peripheral and central nervous system and cardiac involvement with antibodies to voltage-gated potassium channels. Brain 2001;124:2417–2426.PubMedCrossRefGoogle Scholar
  133. 133.
    Newsom-Davis J, Mills KR. Immunological associations of acquired neuromyotonia (Isaacs’ syndrome). Report of five cases and literature review. Brain 1993;116 453–469.PubMedCrossRefGoogle Scholar
  134. 134.
    de Carvalho M, Swash M. Cramps, muscle pain, and fasciculations: not always benign? Neurology 2004;63:721–723.PubMedCrossRefGoogle Scholar
  135. 135.
    Park SB, Lin CS, Krishnan AV, et al. Axaonl dysfunction with voltage gated potassium channel complex antibodies. Exp Neurol 2014;261:337–342.PubMedCrossRefGoogle Scholar
  136. 136.
    Czesnik D, Howells J, Negro F, et al. Increased HCN channel driven inward rectification in benign cramp fasciculation syndrome. Brain 2010;138:3168–3179.CrossRefGoogle Scholar
  137. 137.
    Shimatani Y, Nodera H, Shibuta Y, et al. Abnormal gating of axonal slow potassium current in cramp-fasciculation syndrome. Clin Neurophysiol 2015;126:1246–1254.PubMedCrossRefGoogle Scholar
  138. 138.
    Arcila-Londono X, Lewis RA. Multifocal motor neuropathy. Handb Clin Neurol 2013;115:429–442.PubMedCrossRefGoogle Scholar
  139. 139.
    Cappelen-Smith C, Kuwabara S, Lin CS, Burke D. Abnormalities of axonal excitability are not generalized in early multifocal motor neuropathy. Muscle Nerve 2002;26:769–776.PubMedCrossRefGoogle Scholar
  140. 140.
    Boerio D, Creange A, Hogrel JY, Gueguen A, Bertrand D, Lefaucheur JP. Nerve excitability changes after intravenous immunoglobulin infusions in multifocal motor neuropathy and chronic inflammatory demyelinating neuropathy. J Neurol Sci 2010;292:63–71.PubMedCrossRefGoogle Scholar
  141. 141.
    Vucic S, Black KR, Chong PS, Cros D. Multifocal motor neuropathy: decrease in conduction blocks and reinnervation with long-term IVIg. Neurology 2004;63:1264–1269.PubMedCrossRefGoogle Scholar
  142. 142.
    Cappelen-Smith C, Kuwabara S, Lin CS, Mogyoros I, Burke D. Membrane properties in chronic inflammatory demyelinating polyneuropathy. Brain 2001;124:2439–2447.PubMedCrossRefGoogle Scholar
  143. 143.
    Mathey EK, Park SB, Hughes RA, et al. Chronic inflammatory demyelinating polyradiculoneuropathy: from pathology to phenotype. J Neurol Neurosurg Psychiatry 2015;86:973–985.PubMedPubMedCentralCrossRefGoogle Scholar
  144. 144.
    Lin CS, Krishnan AV, Park SB, Kiernan MC. Modulatory effects on axonal function after intravenous immunoglobulin therapy in chronic inflammatory demyelinating polyneuropathy. Arch Neurol 2011;68:862–869.PubMedCrossRefGoogle Scholar
  145. 145.
    Sung JY, Kuwabara S, Kaji R, et al. Threshold electrotonus in chronic inflammatory demyelinating polyneuropathy: correlation with clinical profiles. Muscle Nerve 2004;29:28–37.PubMedCrossRefGoogle Scholar

Copyright information

© The American Society for Experimental NeuroTherapeutics, Inc. 2016

Authors and Affiliations

  • Susanna B. Park
    • 1
  • Matthew C. Kiernan
    • 1
  • Steve Vucic
    • 2
  1. 1.Brain and Mind CentreUniversity of SydneySydneyAustralia
  2. 2.Westmead Clinical SchoolUniversity of SydneySydneyAustralia

Personalised recommendations