Meta-Analysis and Cost-Effectiveness Analysis of Insulin Glargine 100 U/mL Versus Insulin Degludec for the Treatment of Type 2 Diabetes in China

Abstract

Introduction

To evaluate the efficacy and safety as well as the long-term cost-effectiveness of insulin glargine 100 U/mL (IGlar) versus insulin degludec (IDeg) for the treatment of type 2 diabetes mellitus (T2DM) from the Chinese healthcare system perspective.

Methods

A systematic search of English and Chinese electronic databases for randomized controlled trials (RCTs) comparing IGlar with IDeg for the treatment of T2DM was performed, followed by a meta-analysis to compare the efficacy and safety of IGlar versus IDeg. The CORE Diabetes Model was used to estimate lifetime costs, quality-adjusted life years (QALYs) gained, and cost-effectiveness of IGlar versus IDeg. One-way and probabilistic sensitivity analyses were conducted to assess the underlying parameter uncertainty.

Results

Six RCTs were included in the meta-analysis. The IGlar group showed a statistically significant decrease in glycated hemoglobin (HbA1c) from baseline compared to the IDeg group (mean difference [MD] 0.08%, 95% confidence interval [CI] 0.01–0.14%, P = 0.02). Body mass index (BMI) control was numerically better in the IGlar group than in the IDeg group (MD 0.07 kg/m2, 95% CI − 0.01 to 0.14 kg/m2, P  = 0.08). In terms of hypoglycemia, the incidence of non-severe overall hypoglycemia was comparable between the IDeg and IGlar patient groups (P  > 0.05), while the incidence of non-severe nocturnal hypoglycemia (relative risk [RR 0.79], 95% CI 0.70–0.90,P < 0.01) and the event rates of non-severe overall (RR 0.91, 95% CI 0.85–0.97, P < 0.01) and non-severe nocturnal hypoglycemia (RR 0.91, 95% CI 0.85–0.97, P < 0.01) were lower in the IDeg group. The incidences and event rates of both severe overall and nocturnal hypoglycemia were similar for the two groups (P  > 0.05). The cost-effectiveness analysis showed that IGlar is the dominant treatment option compared with IDeg, with a lifetime savings of 1004 Chinese yuan in direct medical costs and a net gain of 0.015 QALYs per patient. Both one-way and probabilistic sensitivity analyses confirmed the robustness of the results.

Conclusions

IGlar is a cost-saving option with incremental effectiveness compared with IDeg for the treatment of T2DM in China.

Funding

Sanofi China.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  1. 1.

    Hu H, Sawhney M, Shi L, Duan S. A systematic review of the direct economic burden of type 2 diabetes in China. Diabetes Ther. 2015;6(1):7–16. https://doi.org/10.1007/s13300-015-0096-0.

    Article  PubMed  PubMed Central  Google Scholar 

  2. 2.

    World Health Organization. Global report on diabetes. Geneva: World Health Organization. https://www.who.int/substance_abuse/publications/global_alcohol_report/en/.. Accessed 8 Aug 2018.

  3. 3.

    Wang L, Gao PZM. Prevalence and ethnic pattern of diabetes and prediabetes in China in 2013. JAMA. 2017;317(24):2515–23. https://doi.org/10.1001/jama.2017.7596.

    Article  PubMed  PubMed Central  Google Scholar 

  4. 4.

    International Diabetes Federation. IDF diabetes atlas 8th edition. Brussels: International Diabetes Federation. https://diabetesatlas.org/resources/2017-atlas.html. Accessed 8 Aug 2018.

  5. 5.

    NCD Risk Factor Collaboration (NCD-RisC). Worldwide trends in diabetes since 1980: a pooled analysis of 751 population-based studies with 4.4 million participants. Lancet. 2008;387(10027):1513–30. https://doi.org/10.1016/s0140-6736(16)00618-8.

    Article  Google Scholar 

  6. 6.

    Huang Y, Vemer P, Zhu J, Postma MJ, Chen W. Economic burden in Chinese patients with diabetes mellitus using electronic insurance claims data. PLoS One. 2016;11(8):e0159297. https://doi.org/10.1371/journal.pone.0159297.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  7. 7.

    Chen XB, Tang L, Chen HY, Zhao LYHS. Assessing the impact of complications on the costs of type 2 diabetes in urban China. Chin J Diabetes. 2003;11(4):238–41.

    Google Scholar 

  8. 8.

    Chinese Diabetes Society. Treatment guidelines for type 2 diabetes in China. Chin J Diabetes Mellit. 2018;10(1):4–67.

    Google Scholar 

  9. 9.

    Ganda OP, Segal A, Blair E, Beaser R, Gaglia J, Halprin E. GRM of the JCOC. CHAPTER 5. Clinical guideline for pharmacological management of adults with type 2 diabetes. Am J Manag Care. 2018;24(7):SP253–62. https://doi.org/10.1111/jdi.12102.

    CAS  Article  PubMed  Google Scholar 

  10. 10.

    Internal Clinical Guidelines Team. Type 2 diabetes in adults: management. NICE guideline, no 28. London: National Institute for Health and Care Excellence (NICE);2015.

  11. 11.

    Inzucchi SE, Bergenstal RM, Buse JB, et al. Management of hyperglycemia in type 2 diabetes: a patient-centered approach: position statement of the American Diabetes Association (ADA) and the European Association for the Study of Diabetes (EASD). Diabetes Care. 2012;35(6):1364–79.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  12. 12.

    Owens DR, Biol FI. Insulin preparations with prolonged effect. Diabetes Technol Ther. 2011;13:S5–14.https://doi.org/10.2337/dc12-0413.

    Article  PubMed  Google Scholar 

  13. 13.

    Horvath K, Jeitler K, Berghold A, et al. Long-acting insulin analogues versus NPH insulin (human isophane insulin) for type 2 diabetes mellitus (review). Cochrane Database Syst Rev. 2007;18(2):CD005613.

    Google Scholar 

  14. 14.

    Heise T, Hermanski L, Nosek L, Feldman A, Rasmussen S, Haahr H. Insulin degludec: four times lower pharmacodynamic variability than insulin glargine under steady-state conditions in type 1 diabetes. Diabetes Obes Metab. 2012;14(9):859–64. https://doi.org/10.1111/j.1463-1326.2012.01627.x.

    CAS  Article  PubMed  Google Scholar 

  15. 15.

    Heise T, Nosek L, Bøttcher SG, Hastrup HHH. Ultra-long-acting insulin degludec has a flat and stable glucose-lowering effect in type 2 diabetes. Diabetes Obes Metab. 2012;14(10):944–50.

    CAS  Article  Google Scholar 

  16. 16.

    Liu W, Yang X, Huang J. Efficacy and safety of insulin degludec versus insulin glargine: a systematic review and meta-analysis of fifteen clinical trials. Int J Endocrinol. 2018;2018:8726046. https://doi.org/10.1155/2018/8726046.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  17. 17.

    Roussel R, Ritzel R, Boëlle-Le Corfec E, Balkau B, Rosenstock J. Clinical perspectives from the BEGIN and EDITION programmes: trial-level meta-analyses outcomes with either degludec or glargine 300 U/mL vs glargine 100 U/mL in T2DM. Diabetes Metab. 2018;44(5):402–9. https://doi.org/10.1016/j.diabet.2018.02.002.

    CAS  Article  PubMed  Google Scholar 

  18. 18.

    Evans M, Mehta R, Gundgaard J, Chubb B. Cost-effectiveness of insulin degludec vs. insulin glargine U100 in type 1 and type 2 diabetes mellitus in a UK setting. Diabetes Ther. 2018;9(5):1919–30. https://doi.org/10.1016/j.diabet.2018.02.002.

    Article  PubMed  PubMed Central  Google Scholar 

  19. 19.

    Lalić N, Russel-Szymczyk M, Culic M, Tikkanen CKCB. Cost-effectiveness of insulin degludec versus insulin glargine U100 in patients with type 1 and type 2 diabetes mellitus in Serbia. Diabetes Ther. 2018;9(3):1201–16. https://doi.org/10.1007/s13300-018-0426-0.

    Article  PubMed  PubMed Central  Google Scholar 

  20. 20.

    Mezquita-Raya P, Darbà J, Ascanio M, Ramírez de Arellano A. Cost-effectiveness analysis of insulin degludec compared with insulin glargine U100 for the management of type 1 and type 2 diabetes mellitus—from the Spanish National Health System perspective. Expert Rev Pharmacoecon Outcomes Res. 2017;17(6):587–95. https://doi.org/10.1080/14737167.2017.1345628.

    Article  PubMed  Google Scholar 

  21. 21.

    Evans M, Chubb B, Gundgaard J. Cost-effectiveness of insulin degludec versus insulin glargine in adults with type 1 and type 2 diabetes mellitus. Diabetes Ther. 2017;8(2):275–91. https://doi.org/10.1007/s13300-017-0236-9.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  22. 22.

    Pollock RFTC. A short-term cost-utility analysis of insulin degludec versus insulin glargine U100 in patients with type 1 or type 2 diabetes in Denmark. J Med Econ. 2017;20(3):213–20. https://doi.org/10.1080/13696998.2016.1245663.

    CAS  Article  PubMed  Google Scholar 

  23. 23.

    Evans M, Wolden M, Gundgaard J, Chubb B, Christensen T. Cost-effectiveness of insulin degludec compared with insulin glargine for patients with type 2 diabetes treated with basal insulin—from the UK health care cost perspective. Diabetes Obes Metab. 2014;16(4):366–75. https://doi.org/10.1111/dom.12250.

    CAS  Article  PubMed  Google Scholar 

  24. 24.

    Gough SC, Bhargava A, Jain R, Mersebach H, Rasmussen SBR. Low-volume insulin degludec 200 units/ml once daily improves glycemic control similarly to insulin glargine with a low risk of hypoglycemia in insulin-naive patients with type 2 diabetes: a 26-week, randomized, controlled, multinational, treat-to-target trial. Diabetes Care. 2013;36(9):2536–42. https://doi.org/10.2337/dc12-2329.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  25. 25.

    Meneghini L, Atkin SL, Gough SC, et al. BKN-3668 (BEGIN FTI)The efficacy and safety of insulin glargine and insulin degludec dosed at the same time daily. Diabetes Care. 2013;36(4):858–64. https://doi.org/10.2337/dc12-1668.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  26. 26.

    Onishi Y, Iwamoto Y, Yoo SJ, Clauson P, Tamer SCPS. Insulin degludec compared with insulin glargine in insulin-naıve patients with type 2 diabetes: a 26-week, randomized, controlled, Pan-Asian, treat-to-target trial. J Diabetes Investig. 2013;4(6):605–12. https://doi.org/10.1111/jdi.12102.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  27. 27.

    Pan C, Gross JL, Yang W, Lv X. A multinational, randomized, open-label, treat-to-target trial comparing insulin degludec and insulin glargine in insulin-naive patients with type 2 diabetes mellitus naive. Drugs R&D. 2016;16(2):239–49. https://doi.org/10.1007/s40268-016-0134-z.

    CAS  Article  Google Scholar 

  28. 28.

    Garber AJ, King AB, Del Prato S, et al. Insulin degludec, an ultra-longacting basal insulin, versus insulin glargine in basal-bolus treatment with mealtime insulin aspart in type 2 diabetes (BEGIN basal-bolus type 2): a phase 3, randomised, open-label, treat-to-target non-inferiority trial. Lancet. 2012;379(9825):1498–507. https://doi.org/10.1016/S0140-6736(12)60205-0.

    CAS  Article  PubMed  Google Scholar 

  29. 29.

    Zinman B, Philis-Tsimikas A, Cariou B, et al. MCN-3579 (BEGIN OLTI)Insulin degludec versus insulin glargine in insulin-naive patients with type 2 diabetes: a 1-year, randomized, treat-to-target trial (BEGIN Once Long). Diabetes Care. 2012;35(12):2464–71. https://doi.org/10.2337/dc12-1205.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  30. 30.

    Higgins JPT, Green S (editors). Cochrane handbook for systematic reviews of interventions. Chichester: John Wiley & Sons, 2011.

  31. 31.

    Palmer AJ, Roze S, Valentine WJ, et al. The CORE diabetes model: projecting long-term clinical outcomes, costs and costeffectiveness of interventions in diabetes mellitus (types 1 and 2) to support clinical and reimbursement decision-making. Curr Med Res Opin. 2004;20 Suppl 1:S5–26. https://doi.org/10.1185/030079904X1980.

    Article  PubMed  Google Scholar 

  32. 32.

    McEwan P, Foos V, Palmer JL, Lamotte M, Lloyd A, Grant D. Validation of the IMS CORE diabetes model. Value Health. 2014;17(6):714–24. https://doi.org/10.1016/j.jval.2014.07.007.

    Article  PubMed  Google Scholar 

  33. 33.

    Mu Y, Guo L, Li L, et al. The efficacy and safety of insulin degludec versus insulin glargine in insulin-naive subjects with type 2 diabetes: results of a Chinese cohort from a multinational randomized controlled trial. Chin J Intern Med. 2017;56(9):660–6.

    CAS  Google Scholar 

  34. 34.

    Ji L-N, Lu J-M, Guo X-H, et al. Glycemic control among patients in China with type 2 diabetes mellitus receiving oral drugs or injectables. BMC Public Health. 2013;13(1):602. https://doi.org/10.1186/1471-2458-13-602.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  35. 35.

    Yang X, Ma RC, So W-Y, et al. Development and validation of a risk score for hospitalization for heart failure in patients with type 2 diabetes mellitus. Cardiovasc Diabetol. 2008;7(1):9. https://doi.org/10.1186/1475-2840-7-9.

    Article  PubMed  PubMed Central  Google Scholar 

  36. 36.

    Hayes AJ, Leal J, Gray AM, Holman RR, Clarke PM. UKPDS outcomes model 2: a new version of a model to simulate lifetime health outcomes of patients with type 2 diabetes mellitus using data from the 30 year United Kingdom Prospective Diabetes Study: UKPDS 82. Diabetologia. 2013;56(9):1925–33.

    CAS  Article  PubMed  Google Scholar 

  37. 37.

    Folsom AR, Chambless LE, Duncan BB, Gilbert AC, Pankow JS. Prediction of coronary heart disease in middle-aged adults with diabetes. Diabetes Care. 2003;26(10):2777–84. https://doi.org/10.2337/diacare.26.10.2777.

    Article  PubMed  Google Scholar 

  38. 38.

    Yang Yan, Nan Yi, Mengwu Tu, Wang Jijiang, Lili Wang YJ. Major finding of 2015 China adults tobacco survery. Chin J Health Manag. 2015;2016(2):85–7.

    Google Scholar 

  39. 39.

    World Health Organization. Country profiles. Global status report on alcohol and health 2014. Geneva: World Health Organization.

  40. 40.

    Freemantle N, Mamdani M, Vilsbøll T, Kongsø JH, Kvist K, Bain SC. IDegLira versus alternative intensification strategies in patients with type 2 diabetes inadequately controlled on basal insulin therapy. Diabetes Ther. 2015;6(4):573–91. https://doi.org/10.1007/s13300-015-0142-y.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  41. 41.

    Duan X, Li C, Li YLQ. Epidemiological characteristics, medical cost and healthcare resource utilization of diabetes-related complications among chinese patients with type 2 diabetes mellitus. Value Health 2018;21:S40.

  42. 42.

    Beaudet A, Clegg J, Thuresson P-O, Lloyd A, McEwan P. Review of utility values for economic modeling in type 2 diabetes. Value Health. 2014;17(4):462–70. https://doi.org/10.1016/j.jval.2014.03.003.

    Article  PubMed  Google Scholar 

  43. 43.

    Goldney RD, Phillips PJ, Fisher LJWD. Diabetes, depression, and quality of life: a population study. Diabetes Care. 2004;27(5):1066–70.

    Article  Google Scholar 

  44. 44.

    Marc E, Kamlesh K, Muhammad M, et al. Health-related quality of life associated with daytime and nocturnal hypoglycaemic events: a time trade-off survey in five countries. Health Qual Life Outcomes. 2013;11(90):1–9. https://doi.org/10.1186/1477-7525-11-90.

    Article  Google Scholar 

  45. 45.

    Marrett E, Radican L, Davies MJ, Zhang Q. Assessment of severity and frequency of self-reported hypoglycemia on quality of life in patients with type 2 diabetes treated with oral antihyperglycemic agents : a survey study. BMC Res Notes. 2011;4:251–8. https://doi.org/10.1186/1756-0500-4-251.

    Article  PubMed  PubMed Central  Google Scholar 

  46. 46.

    Matza LS, Boye KS, Yurgin N, Brewster-Jordan J, Mannix S, Shorr JMBB. Utilities and disutilities for type 2 diabetes treatment-related attributes. Qual Life Res. 2007;16(7):1251–65. https://doi.org/10.1007/s11136-007-9226-0.

    Article  PubMed  Google Scholar 

  47. 47.

    Lovre D, Fonseca V. Benefits of timely basal insulin control in patients with type 2 diabetes. J Diabetes Complications. 2015;29(2):295–301.https://doi.org/10.1016/j.jdiacomp.2014.11.018.

    Article  PubMed  Google Scholar 

  48. 48.

    Rodbard HW, Gough S, Lane W. Reduced risk of hypoglycemia with insulin degludec versus insulin glargine in patients with type 2 diabetes requiring high doses of basal insulin: a meta-analysis of 5 randomized begin trials. Endocr Pract. 2014;20(4):285–92. https://doi.org/10.4158/ep13287.or.

    Article  PubMed  Google Scholar 

  49. 49.

    Vora J, Christensen T, Rana A, Bain SC. Insulin degludec versus insulin glargine in type 1 and type 2 diabetes mellitus: a meta-analysis of endpoints in phase 3a trials. Diabetes Ther. 2014;5(2):435–46. https://doi.org/10.1007/s13300-014-0076-9.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  50. 50.

    Einhorn D, Handelsman Y, Bode BW, Endahl LA, Mersebach H, King AB. Patients achieving good glycemic control (HBA1c < 7%) experience a lower rate of hypoglycemia with insulin degludec than with insulin glargine: a meta-analysis of phase 3A trials. Endocr Pract. 2015;21(8):917–26. https://doi.org/10.4158/EP14523.OR.

    Article  PubMed  Google Scholar 

  51. 51.

    Yaozhi database. China’s provincial drug bidding price [DB/OL]. https://db.yaozh.com/yaopinzhongbiao.

  52. 52.

    Wu J, Xiaoning HYL. Cost-effectiveness analysis of insulin aspart 30 versus insulin glargine in patients with type 2 diabetes in China. Chin Pharm J. 2016;51(5):242–7.

    Google Scholar 

Download references

Acknowledgements

Funding

Sponsorship for this study and the journal’s Rapid Service Fee were funded by Sanofi China. All authors had full access to all of the data in this study and take complete responsibility for the integrity of the data and accuracy of the data analysis.

Editorial Assistance

X. Henry Hu, MD, Ph.D. provided language help and proofread the article.

Authorship

All named authors meet the International Committee of Medical Journal Editors (ICMJE) criteria for authorship for this article, take responsibility for the integrity of the work as a whole, and have given their approval for this version to be published.

Authorship Contributions

Wen Su, Chaoyun Li, Lei Zhang and Ziyi Lin participated in the study design, analysis, discussion, and preparation of the manuscript. Jun Tan and Jianwei Xuan participated in the analysis, discussion, and preparation of the manuscript.

Disclosures

Chaoyun Li is an employee of Sanofi China. Wen Su, Lei Zhang, Ziyi Lin, Jun Tan, and Jianwei Xuan have nothing to disclose.

Compliance with Ethics Guidelines

This article is based on previously conducted studies and does not contain any studies with human participants or animals performed by any of the authors.

Data Availability

Qualified researchers may request access to patient level data and related study documents, including the clinical study report, study protocol with any amendments, blank case report form, statistical analysis plan, and dataset specifications. Patient-level data will be anonymized, and study documents will be redacted to protect the privacy of trial participants. Further details on Sanofi’s data sharing criteria, eligible studies, and process for requesting access can be found at “https://doi.org/10.1007/s13300-015-0096-0”.

Open Access

This article is distributed under the terms of the Creative Commons Attribution-NonCommercial 4.0 International License (http://creativecommons.org/licenses/by-nc/4.0/), which permits any noncommercial use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Jianwei Xuan.

Additional information

Enhanced Digital Features

To view enhanced digital features for this article go to https://doi.org/10.6084/m9.figshare.9586148.

Electronic Supplementary Material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 104 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Su, W., Li, C., Zhang, L. et al. Meta-Analysis and Cost-Effectiveness Analysis of Insulin Glargine 100 U/mL Versus Insulin Degludec for the Treatment of Type 2 Diabetes in China. Diabetes Ther 10, 1969–1984 (2019). https://doi.org/10.1007/s13300-019-00683-2

Download citation

Keywords

  • Cost-effectiveness
  • Insulin degludec
  • Insulin glargine
  • Meta-analysis
  • Type 2 diabetes