Skip to main content
Log in

Estimation of the Strength Coefficient and Strain Hardening Exponent from Monotonic Tensile Properties of Steels

  • Published:
International Journal of Steel Structures Aims and scope Submit manuscript

Abstract

In order to derive a method for estimating the strength coefficient and strain hardening exponent of steel, the performance parameters of 86 kinds of steel taken from American Iron and Steel Institute (AISI) Bar Steel Fatigue Database were examined and equations that related the strength coefficient and strain hardening exponent to the ultimate tensile strength and yield strength were developed. Correlations from the literature among the strength coefficient, strain hardening exponent and other monotonic tensile properties were also examined and compared to the relationships proposed in this study using the data of 86 kinds of steel. The proposed method was shown to be better used to estimate the strength coefficient and strain hardening exponent.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25

Similar content being viewed by others

References

  • Alcala, J., Barone, A. C., & Anglada, M. (2000). The influence of plastic hardening on surface deformation modes around Vickers and spherical indents. Acta Metallurgica,48, 3451–3464.

    Google Scholar 

  • American Iron and Steel Institute (AISI). (2004). Bar steel fatigue database http://barsteelfatigue.autosteel.org/. Accessed 12 August 2017.

  • Antoine, P., Vandeputte, S., & Vogt, J. B. (2006). Empirical model predicting the value of the strain hardening exponent of a Ti-IF steel grade. Materials Science and Engineering A,433, 55–63.

    Article  Google Scholar 

  • Antunes, R. A., & de Oliveria, M. C. L. (2014). Materials selection for hot stamped automotive body parts: An application of the Ashby approach based on the strain hardening exponent and stacking fault energy of materials. Materials and Design,63, 247–256.

    Article  Google Scholar 

  • ASTM Standard E646-93. (1997). Standard test method for tensile strain-hardening exponents (n-values) of metallic sheet materials. Annual Book of ASTM Standards (Vol. 03.01, pp. 550–556). West Conshohocken, PA: American Society for Testing and Materials.

    Google Scholar 

  • ASTM Standard E739-91. (1997). Standard practice for statistical analysis of linear or linearized stress-life (S-N) and strain life (ε-N) fatigue data. Annual Book of ASTM Standards (Vol. 03.01, pp. 615–621). West Conshohocken, PA: American Society for Testing and Materials.

    Google Scholar 

  • Bai, Y., & Wierzbicki, T. (2010). Application of extended Mohr–Coulomb criterion to ductile fracture. International Journal of Fracture,161, 1–20.

    Article  Google Scholar 

  • Bridgman, P. W. (1944). Stress distribution at the necking of tension specimen. Transactions of the American Society for Metals,32, 553–572.

    Google Scholar 

  • Hill, R., Storakers, B., & Zdunek, A. B. (1989). A theoretical study of the Brinell hardness test. Proceedings of the Royal Society of London,A423, 301–330.

    Article  Google Scholar 

  • Hortigon, B., Gallardo, J. M., Nieto-Garcia, E. J., & Lopez, J. A. (2019). Strain hardening exponent and strain at maximum stress: Steel rebar case. Construction and Building Materials,196, 175–184.

    Article  Google Scholar 

  • Huy, V. L., Gaspar, J., Paul, O., & Kamiya, S. (2012). Statistical characterization of fatigue lifetime of polysilicon thin films. Sensors and Actuators, A: Physical,179, 251–262.

    Article  Google Scholar 

  • Lesitha, G., & Thomas, P. Y. (2013). Estimation of the scale parameter of a log-logistic distribution. Metrika,76, 427–448.

    Article  MathSciNet  Google Scholar 

  • Lopez, Z. (2012). “Correlations among tensile and cyclic deformation properties for steels and implications on fatigue life predictions.” M.S. thesis, The University of Toledo.

  • Matthews, J. R. (1980). Indentation hardness and hot pressing. Acta Metallurgica,28, 311–318.

    Article  Google Scholar 

  • Meggiolaro, M. A., & Castro, J. T. P. (2004). Statistical evaluation of strain-life fatigue crack initiation predictions. International Journal of Fatigue,26, 463–476.

    Article  Google Scholar 

  • Mohr, D., & Marcadet, S. J. (2015). Micromechanically motivated phenomenological Hosford–Coulomb model for predicting ductile fracture initiation at low stress triaxialities. International Journal of Solids and Structures,67, 40–55.

    Article  Google Scholar 

  • Morrison, W. B. (1966). The effect of grain size on the stress-strain relationship in low-carbon steel. ASM Transactions Quarterly,59, 824–846.

    Google Scholar 

  • Qiu, H., Wang, L. N., Hanamura, T., & Torizuka, S. (2012). Prediction of the work hardening exponent for ultrafine-grained steels. Materials Science and Engineering A,536, 269–272.

    Article  Google Scholar 

  • Rajendran, R., Venkateshwarlu, M., Petley, V., & Verma, S. (2014). Strain hardening exponents and strength coefficients for aeroengine isotropic metallic materials—A reverse engineering approach. Journal of the Mechanical Behavior of Materials,23, 128–133.

    Article  Google Scholar 

  • Roessle, M. L., & Fatemi, A. (2000). Strain-controlled fatigue properties of steels and some simple approximations. International Journal of Fatigue,22, 495–511.

    Article  Google Scholar 

  • Sebek, F., Kubik, P., Hulka, J., & Petruska, J. (2016). Strain hardening exponent role in phenomenological ductile fracture criteria. European Journal of Mechanics A/Solids,57, 149–164.

    Article  MathSciNet  Google Scholar 

  • Stephens, R. I., Fatemi, A., Stephens, R. R., & Fuch, H. O. (2000). Metal fatigue in engineering (2nd ed.). New York: Willey.

    Google Scholar 

  • Taljat, B., Zacharias, T., & Kosel, T. (1998). New analysis procedure to determine stress–strain curve from spherical indentation data. International Journal of Solids and Structures,35, 4411–4426.

    Article  Google Scholar 

  • Wierzbicki, T., Bao, Y., & Bai, Y. (2005). A new experimental technique for constructing a fracture envelope of metals under multiaxial loading. In Proceeding of the 2005 SEM annual conference and exposition on experimental and applied mechanics (pp. 1295–1303).

  • Ye, D. Y., Matsuoka, S., Suzuki, N., & Maeda, Y. (2004). Further investigation of Neuber’s rule and the equivalent strain energy density (ESED) method. International Journal of Fatigue,26, 447–455.

    Article  Google Scholar 

  • Zeng, Z., & Fatemi, A. (2001). Elastic-plastic stress and strain behaviour at notch roots under monotonic and cyclic loadings. Journal of Strain Analysis,36, 287–300.

    Article  Google Scholar 

  • Zhang, F., Huang, M. Z., & Shi, D. K. (1989). The relationship between the strain hardening exponent n and the microstructure of metals. Materials Science and Engineering A,122, 211–213.

    Article  Google Scholar 

  • Zhang, Z. P., Li, C. W., Sun, Q., Qiao, Y. J., & Zhao, W. Z. (2006a). Formula relating fracture strength and fracture ductility with strength coefficient and strain hardening exponent. Journal of Materials Engineering and Performance,15, 618–621.

    Article  Google Scholar 

  • Zhang, Z. P., Sun, Q., Li, C. W., & Zhao, W. Z. (2006b). Theoretical calculation of the strain-hardening exponent and the strength coefficient of metallic materials. Journal of Materials Engineering and Performance,15, 19–22.

    Article  Google Scholar 

  • Zhang, Z. P., Wu, W. H., Chen, D. L., Sun, Q., & Zhao, W. Z. (2004). New formula relating the yield stress–strain with the strength coefficient and the strain hardening exponent. Journal of Materials Engineering and Performance,13, 509–512.

    Article  Google Scholar 

  • Zheng, X. L. (1994). Quantitative theory of metal fatigue. Xian: Publishing House of Northwestern Polytechnic University. (in Chinese).

    Google Scholar 

  • Zhu, X. K., & Leis, B. N. (2005). Influence of yield-to-tensile strength ratio on failure assessment of corroded pipelines. Journal of Pressure Vessel Technology,127, 436–442.

    Article  Google Scholar 

Download references

Acknowledgement

The authors would like to thank Prof. Z.P. Zhang and Dr. C.W. Li for providing the program code of Zhang’s method. The authors gratefully acknowledge the financial support of the National Natural Science Foundation of China (No. 51601221), the Fundamental Research Funds for the Central Universities (No. JB180402), and the Natural Science Basic Research Plan in Shaanxi Province of China (No. 2019JQ-353).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jing Li.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, J., Qiu, Yy., Wang, Hd. et al. Estimation of the Strength Coefficient and Strain Hardening Exponent from Monotonic Tensile Properties of Steels. Int J Steel Struct 19, 1951–1968 (2019). https://doi.org/10.1007/s13296-019-00256-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13296-019-00256-w

Keywords

Navigation