Skip to main content
Log in

Tests of New Box Steel Replaceable Piers Under Axial Compression

  • Published:
International Journal of Steel Structures Aims and scope Submit manuscript

Abstract

A new recoverable box steel bridge column with bottom replaceable piers was proposed. The axial compressive tests were initially performed on fourteen specimens which have three different types of steel replaceable piers. Results demonstrate that all three types of structural measures improve the specimens’ strength and deformation performance. Compared to the installing of the low yield point steel plates, the embedded shell plates and the longitudinal ribs on the box walls result in a greater increase of the specimens’ bearing capacity and ductile performance. When the specimen has the longitudinal ribs installed on the box walls and the smaller space of transverse stiffeners, its bearing capacity is increased. The specimens’ ductility is improved when the space of transverse stiffeners and the height of low yield point steel plates decrease. The specimens’ bearing capacity and ductility are only slightly affected by the variation of the embedded shell’s radian. Finally, a simplified calculation formula for the axial compressive bearing capacity of the bottom replaceable piers is proposed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25

Similar content being viewed by others

Abbreviations

L :

Height of a column

h :

Height of box cross section

h 0 :

Height of web plate

h 1 :

Height of low yield point steel plate

b :

Width of box cross section

b 1 :

Width of low yield point steel plate

t w :

Thickness of a web plate

t f :

Thickness of a flange plate

θ :

The radian of embedded shell plate

S :

Space of transverse stiffening ribs on embedded shell plate

A :

The cross-sectional area

λ z :

Slenderness ration along the axis Z

E :

Young’s modulus

μ :

Displacement ductility coefficient

f y :

Yield strength of steel material

P :

Vertical load at the top of the column

P y :

Yield load

P max :

Maximum load

P u :

Ultimate load

Δ :

Vertical displacement at the top of the column

Δ y :

Vertical displacement corresponding to Py

Δ max :

Vertical displacement corresponding to Pmax

Δ u :

Vertical displacement corresponding to Pu

References

  • Aoki, T., Takaku, T., Fukumoto, Y., & Susantha, K. S. A. (2008). Experimental investigation for seismic performance of framed structures having longitudinally profiled plates. Journal of Constructional Steel Research, 64, 875–881.

    Article  Google Scholar 

  • Bruneau, M. (1998). Performance of steel bridges during the 1995 Hyogoken-Nanbu (Kobe, Japan) earthquake—A North American perspective. Engineering Structures, 20(12), 1063–1078.

    Article  Google Scholar 

  • Chen, S. J., & Chen, J. (2009). Steel bridge columns with pre-selected plastic zone for seismic resistance. Thin-Walled Structures, 47, 31–38.

    Article  Google Scholar 

  • D’Aniello, M., Guneyisi, E. M., Landolfo, R., & Mermerdas, K. (2014). Analytical prediction of available rotation capacity of cold-formed rectangular and square hollow section beams. Thin-Walled Structures, 77, 141–152.

    Article  Google Scholar 

  • Ge, H. B., & Kang, L. (2014). Ductile crack initiation and propagation in steel bridge piers subjected to random cyclic loading. Engineering Structures, 59, 809–820.

    Article  Google Scholar 

  • Ge, H. B., Susantha, K. A. S., Satake, Y., & Usami, T. (2003). Seismic demand predictions of concrete-filled steel box columns. Engineering Structures, 25, 337–345.

    Article  Google Scholar 

  • Hsu, H. L., & Chang, D. L. (2001). Upgrading the performance of steel box piers subjected to earthquakes. Journal of Constructional Steel Research, 57, 945–958.

    Article  Google Scholar 

  • Kitada, T., Matsumura, M., & Otoguro, Y. (2003). Seismic retrofitting techniques using an energy absorption segment for steel bridge piers. Engineering Structures, 25, 621–635.

    Article  Google Scholar 

  • Liu, J. P., Zhou, X. H., & Zhang, S. M. (2008). Seismic behaviour of square CFT beam-columns under biaxial bending moment. Journal of Constructional Steel Research, 64, 1473–1482.

    Article  Google Scholar 

  • Nishikawa, K., Yamamoto, S., Natori, T., Terao, K., Yasunami, H., & Terada, M. (1998). Retrofitting for seismic upgrading of steel bridge columns. Engineering Structures, 20(4–6), 540–551.

    Article  Google Scholar 

  • Shi, G., Zhou, W. J., Bai, Y., & Lin, C. C. (2014). Local buckling of 460 MPa high strength steel welded section stub columns under axial compression. Journal of Constructional Steel Research, 100, 60–70.

    Article  Google Scholar 

  • Shimizu, S., & Watanabe, T. (2007). Behaviour of concrete-filled steel columns under the seismic loading. Thin-Walled Structures, 45, 921–926.

    Article  Google Scholar 

  • Susantha, K. A. S., Aoki, T., Kumano, T., & Yamamoto, K. (2005). Applicability of low-yield-strength steel for ductility improvement of steel bridge piers. Engineering Structures, 27, 1064–1073.

    Article  Google Scholar 

  • Tao, Z., & Han, L. H. (2007). Behaviour of fire-exposed concrete-filled steel tubular beam column repaired with CFRP wraps. Thin-Walled Structures, 2007(45), 63–76.

    Article  Google Scholar 

  • Usami, T., Zheng, Y., & Ge, H. B. (2000). Recent research developments in stability and ductility of steel bridge structures: General report. Journal of Constructional Steel Research, 55, 183–209.

    Article  Google Scholar 

  • Wang, Y. B., Li, G. Q., Cui, W., & Chen, S. W. (2014). Seismic behavior of high strength steel welded beam-column members. Journal of Constructional Steel Research, 102, 245–255.

    Article  Google Scholar 

  • Yamao, T., Iwatsubo, K., Yamamuro, T., Ogushi, M., & Matsumura, S. (2002). Steel bridge piers with inner cruciform plates under cyclic loading. Thin-Walled Structures, 40, 183–197.

    Article  Google Scholar 

  • Yuan, W. B., Bao, Z. S., Yu, N. T., Zhu, S. S., & Wu, L. P. (2017). Nonlinear bending of box section beams of finite length under uniformly distributed loading. International Journal of Steel Structures, 17(2), 491–499.

    Article  Google Scholar 

  • Yuan, H. H., Dang, J., & Aoki, T. (2013). Experimental study of the seismic behavior of partially concrete filled steel bridge piers under bidirectional dynamic loading. Earthquake Engineering Structural Dynamics, 42, 2197–2216.

    Article  Google Scholar 

Download references

Acknowledgements

The research reported in the paper is supported by the National Natural Science Foundation of China (Nos. 51778248 and 51408240), the Promotion Program for Young and Middle-aged Teacher in Science and Technology Research of Huaqiao University (No. ZQN-PY312) and the Natural Science Foundation of Fujian Province (No. 2018J01075). The financial support is highly appreciated.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Haifeng Li.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, H., Luo, J., Han, F. et al. Tests of New Box Steel Replaceable Piers Under Axial Compression. Int J Steel Struct 19, 896–913 (2019). https://doi.org/10.1007/s13296-018-0171-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13296-018-0171-2

Keywords

Navigation