Skip to main content
Log in

Ultimate Strength of 10 MW Wind Turbine Tower Considering Opening, Stiffener, and Initial Imperfection

  • Published:
International Journal of Steel Structures Aims and scope Submit manuscript

Abstract

This paper evaluates the effects of door opening, collar stiffener, and initial imperfection on the ultimate strength of a 10 MW wind tower. The lower segment of the tower was modeled to investigate the ultimate strength using steel cylindrical shell elements of finite element program ABAQUS. The wind tower was classified into three categories; without opening nor stiffener (C1), with opening but no stiffener (C2), and with opening and stiffener (C3). The C2 and C3 were further divided into long axis and short axis categories depending on the position of the opening. Result from linear and nonlinear analyses shows that the bigger the opening the bigger the reduction in strength and the same thing goes for the initial imperfection ratio or ovality of the shell. Also, there is a significant decreased in strength as the initial imperfection ratio increases by as high as 18.08%.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • British Standards Institution. (2007). BS EN 1993-1-6:2007: Eurocode 3: Design of Steel Structures—Part 1-6: Strength and Stability of Shell Structures. London: BSI.

    Google Scholar 

  • Brush, D., & Almroth, B. (1975). Buckling of bars, plates, and shells. New York: McGraw-Hill.

    MATH  Google Scholar 

  • Det Norske Veritas, A. S. (2013). DNV-RP-C208: Determination of structural capacity by non-linear finite element analysis methods. Oslo: Det Norske Veritas.

    Google Scholar 

  • Dimopoulos, C. A., & Gantes, C. J. (2012). Experimental investigation of buckling of wind turbine tower cylindrical shells with opening and stiffening under bending. Thin-Walled Structures, Elsevier Science Limited, 54, 140–155.

    Article  Google Scholar 

  • Dimopoulos, C. A., & Gantes, C. J. (2013). Comparison of stiffening types of the cutout in tubular wind turbine towers. Journal of Constructional Steel Research, Elsevier Science Limited, 83, 62–74.

    Article  Google Scholar 

  • Dnv, G. L. A. S. (2017). DNVGL-RP-C202: Buckling strength of shells. Oslo: DNV GL.

    Google Scholar 

  • Fereidoon, A., Kolasangiani, K., Akbarpour, A., & Shariati, M. (2013). Study on buckling of steel cylindrical shells with an elliptical cutout under combined loading. Journal of Computational and Applied Research in Mechanical Engineering, 3(1), 13–25.

    Google Scholar 

  • Germanischer Lloyd Renewables Certification. (2012). Guideline for the Certification of Offshore Wind Turbine. Hamburg: GL Renewables Certification.

    Google Scholar 

  • Jang, M. S., Park, J. S., Lee, Y. W., Kang, S. Y., & Kang, Y. J. (2015). A study of the effect of imperfection on buckling strength in thin cylindrical shells under bending. Journal of Korea Academia-Industrial Cooperation Society, 16(3), 2263–2271.

    Article  Google Scholar 

  • Kougias, L. (2009). A study of the effect of imperfections on buckling capability in thin cylindrical shells under axial loading. Master Thesis, Rensselaer Polytechnic Institute: Hartford.

  • Lancaster, E. R., Calladine, C. R., & Palmer, S. C. (2000). Paradoxical buckling behaviour of a thin cylindrical shell under axial compression. International Journal of Mechanical Sciences, Elsevier Science Limited, 42(5), 843–865.

    Article  Google Scholar 

  • Reyno, H. (2016). The ultimate strength for the lower segment of tubular steel wind tower with opening. Master Thesis, Sangmyung University: South Korea.

  • Reyno, H., Park, J. S., & Kang, Y. J. (2015). Influence of door opening and collar stiffener on the buckling capacity of cylindrical wind tower. Indian Journal of Science and Technology, 8(25), 1–7.

    Article  Google Scholar 

  • Shariati, M., & Rokhi, M. (2010). Buckling of steel cylindrical shells with an elliptical cutout. International Journal of Steel Structures, 10(2), 193–205.

    Article  Google Scholar 

  • Starnes, J. (1972). Effect of a slot on the buckling load of a cylindrical shell with a circular cutout. AAIA Journal, 10(2), 227–229.

    Article  Google Scholar 

  • Tennyson, R. (1968). The effects of unreinforced circular cutouts on the buckling of circular cylindrical shells under axial compression. Journal of Engineering for Industry, 90(4), 541–546.

    Article  Google Scholar 

  • Yeh, M., Lin, M., & Wu, W. (1999). Bending buckling of an elastoplastic cylindrical shell with a cutout. Engineering Structures, 21(11), 996–1005.

    Article  Google Scholar 

  • Young, W., Budynas, R., & Sadegh, A. (2011). Roark’s formulas for stress and strain (8th ed.). New York: McGraw-Hill.

    Google Scholar 

Download references

Acknowledgements

This study is funded by Ministry of Land, Transportation and Maritime Affairs of the Korean Government through the Construction Technology Innovation Program (Grant Code 12 Technology Innovation E09) and Technology Advancement Research Program (17CTAP-C132629-01).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jong-Sup Park.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Santos, R.R., Cho, SJ. & Park, JS. Ultimate Strength of 10 MW Wind Turbine Tower Considering Opening, Stiffener, and Initial Imperfection. Int J Steel Struct 18, 1318–1324 (2018). https://doi.org/10.1007/s13296-018-0124-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13296-018-0124-9

Keywords

Navigation