Skip to main content
Log in

Structural behaviour of stainless steel stub column under axial compression: a FE study

  • Published:
International Journal of Steel Structures Aims and scope Submit manuscript

Abstract

This paper presents a Finite Element (FE) study on Lean Duplex Stainless Steel stub column with built-up sections subjected to pure axial compression with column web spacing varied at different position across the column flanges. The thicknesses of the steel sections were from 2 to 7 mm to encompass a range of section slenderness. The aim is to study and compare the strength and deformation capacities as well as the failure modes of the built-up stub columns. The FE results have been compared with the un-factored design strengths predicted through EN1993-1-4 (2006) + A1 (2015) and ASCE8-02 standards, Continuous Strength Method (CSM) and Direct Strength Method (DSM). The results showed that the design rules generally under predict the bearing capacities of the specimens. It’s been observed that the CSM method offers improved mean resistance and reduced scatter for both classes of cross-sections (i.e. slender and stocky sections) compared to the EN1993-1-4 (2006) + A1 (2015) and ASCE 8-02 design rules which are known to be conservative for stocky cross-sections.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

References

  • ABAQUS. (2013). “ABAQUS/Standard user’s manual volumes I-III and ABAQUS CAE manual”, Version 6.13, Dassault Systemes Corp., Providence, USA.

  • Afshan, A., & Gardner, L. (2013). The continuous strength method for structural stainless steel design. Thin-Walled Structures, 68, 42–49.

    Article  Google Scholar 

  • American Society of Civil Engineers, SEI/ASCE8-02. (2002). Specification for the design of cold-formed stainless steel structural members. Virginia: ASCE.

    Google Scholar 

  • Anbarasua, M., & Ashraf, M. (2016). Behaviour and design of cold-formed lean duplex stainless steel lipped channel columns. Thin-Walled Structures, 104, 106–115.

    Article  Google Scholar 

  • Anbarasua, M., & Ashraf, M. (2017). Interaction of local-flexural buckling for cold-formed lean duplex stainless steel hollow columns. Thin-Walled Structures, 112, 20–30.

    Article  Google Scholar 

  • Chang, K. H., Lee, K. L., & Pan, W. F. (2010). Buckling failure of 310 stainless steel tubes with different diameter-to-thickness ratios under cyclic bending. Steel and Composite Structures, 10(3), 245–260.

    Article  Google Scholar 

  • Dai, X., & Lam, D. (2010). Axial compressive behaviour of stub concrete-filled columns with elliptical stainless steel hollow sections. Steel and Composite Structures, 10(6), 517–539.

    Article  Google Scholar 

  • Ellobody, E., & Young, B. (2007). Investigation of cold-formed stainless steel non-slender circular hollow section columns. Steel and Composite Structures, 7(4), 321–337.

    Article  Google Scholar 

  • EN 10088-4 (2009). “Stainless steels-part 4: Technical delivery conditions for sheet/plate and strip of corrosion resisting steels for general purposes”, CEN.

  • EN1993-1-4.Eurocode3 (2006). “Design of Steel Structures - Part1-4: General Rules: Supplementary Rules for Stainless Steels”, BSI, London

  • Gardner, L. (2002). A new approach to structural stainless steel design”, Ph.D.thesis. Struct. Section, Department of Civil and Environmental Engineering, Imperial College London, UK.

  • Gardner, L. (2008). The continuous strength method. Proceedings of the Institution of Civil Engineers: Structures and Buildings, 161(3), 127–133.

    Article  Google Scholar 

  • Gardner, L., & Ashraf, M. (2006). Structural design for non-linear metallic materials. Engineering Structure, 28, 925–936.

    Article  Google Scholar 

  • Gardner, L., Insausti, A., Ng, K. T., & Ashraf, M. (2010). Elevated temperature material propertiesof stainless steel alloys. Engineering Structure, 66(5), 634–647.

    Google Scholar 

  • Gardner, L., & Nethercot, D. A. (2004a). Experiments on stainless steel hollow—Part 1:material and cross-sectional behavior”. Constr. Steel Res., 60(9), 1291–1318.

    Article  Google Scholar 

  • Gardner, L. and Nethercot, D.A. (2004). “Numerical modeling of stainless steel structural components-A consistent approach”, Journal of Structural Engineering, ASCE, 130(10), 1586-1601.

  • Gardner, L., Talja, A., & Baddoo, N. R. (2006). Structural design of high-strength austenitic stainless steel. Thin-Walled. Structures, 44, 517–528.

    Article  Google Scholar 

  • Hassanein, M. F. (2010). Numerical modeling of concrete-filled lean duplex slender stainless steel tubular stub columns. Journal of Constructional Steel Research, 66(8–9), 1057–1068.

    Article  Google Scholar 

  • Huang, Y., & Young, B. (2014). Structural performance of cold-formed lean duplex stainless steel columns. Thin-Walled Structures, 83, 59–69.

    Article  Google Scholar 

  • Kuwamura, H. (2003). Local buckling of thin-walled stainless steel members. Steel Structures, 3, 191–201.

    Google Scholar 

  • Liu, Y., & Young, B. (2003). Buckling of stainless steel square hollow section compression members. Journal of Constructional Steel Research, 59, 165–177.

    Article  Google Scholar 

  • Mirambell, E., & Real, E. (2000). On the calculation of deflections in structural stainless steel beams: an experimental and numerical investigation. Journal of Constructional Steel Research, 54, 109–133.

    Article  Google Scholar 

  • Nilsson, J. O., Chai, G., & Kivisäkk, U. (2008). Recent development of stainless steels (pp. 585–590). Helsinki, Finland: Pro. of the Sixth European Stainless steel Conf.

    Google Scholar 

  • Ramberg, W. and Osgood, W.R. (1943). “Description of stress-strain curves by three parameters”, Technical Note No 902, Washington DC, National advisory committee for aeronautics

  • Rasmussen, K. J. R., & Hancock, G. J. (1993). Design of cold-formed stainless steel tubular members I-columns. Journal of Structural Engineering, 119(8), 2349–2367.

    Article  Google Scholar 

  • Sachinanda, K., & Singh, K. D. (2015). Numerical study of fixed ended lean duplex stainless steel (LDSS) flat oval hollow stub column under pure axial compression. Thin-Walled Structures, 96, 105–119.

    Article  Google Scholar 

  • Sachinanda, K., & Singh, K. D. (2017). Structural behaviour of fixed ended stocky Lean Duplex Stainless Steel (LDSS) flat oval hollow column under axial compression. Thin-Walled Structures, 113, 47–60.

    Article  Google Scholar 

  • Salem, A. H., Sayed-Ahmed, E. Y., El-Serwi, A. A., & Korashy, M. M. (2004). Ultimate section capacity of steel thin-walled I-section beam-columns. Steel and Composite Structures, 4(5), 367–384.

    Article  Google Scholar 

  • Saliba, N., & Gardner, L. (2013). Cross-section stability of lean duplex stainless steel welded I-Sections. Journal of Constructional Steel Research, 80, 1–14.

    Article  Google Scholar 

  • Schafer, B. W. (2008). Review: the direct strength method of cold-formed steel member design. Journal of Constructional Steel Research, 64(7–8), 766–778.

    Article  Google Scholar 

  • Sieurin, H., Sandström, R., & Westin, E. M. (2007). Fracture toughness of the lean duplex stainless steel LDX 2101. Metallurgical and Materials Transactions A, 37(10), 2975–2981.

    Article  Google Scholar 

  • Theofanous, M., & Gardner, L. (2009). Testing and numerical modelling of lean duplex stainless steel hollow section columns. Engineering Structures, 31, 3047–3058.

    Article  Google Scholar 

  • Theofanous, M., & Gardner, L. (2011). Effect of element interaction and material nonlinearity on the ultimate capacity of stainless steel cross-sections. Steel and Composite Structures, 12(1), 73–92.

    Article  Google Scholar 

  • Uy, B. (2008). Stability and ductility of high performance steel sections with concrete infill. Journal of Constructional Steel Research, 64(7–8), 748–754.

    Article  Google Scholar 

  • Yang, L., Zhao, M., Chan, T. M., Shan, F., & Xu, D. (2016a). Flexural buckling of welded austenitic and duplex stainless steel I-section columns. Journal of Constructional Steel Research, 122, 339–353.

    Article  Google Scholar 

  • Yang, L., Zhao, M., Xu, D., Shang, F., Yuan, H., Wang, Y., et al. (2016b). Flexural buckling behaviour of welded stainless steel box-section columns. Thin-Walled Structures, 104, 185–197.

    Article  Google Scholar 

  • Young, B., & Liu, Y. (2002). Experimental investigation of cold-formed stainless steel columns. Journal of Structural Engineering, 129(2), 169–176.

    Article  Google Scholar 

  • Young, B., & Lui, W. M. (2006). Tests of cold-formed high strength stainless steel compression members. Thin-Walled Structures, 44(2), 224–234.

    Article  Google Scholar 

  • Yuan, H. X., Wang, Y. Q., Shi, Y. J., & Gardner, L. (2014). Stub column tests on stainless steel built-up sections. Thin-Walled Structures, 84, 103–114.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Longshithung Patton.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khate, K., Patton, M.L. & Marthong, C. Structural behaviour of stainless steel stub column under axial compression: a FE study. Int J Steel Struct 18, 1723–1740 (2018). https://doi.org/10.1007/s13296-018-0083-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13296-018-0083-1

Keywords

Navigation