Skip to main content
Log in

Thawing permafrost and methane emission in Siberia: Synthesis of observations, reanalysis, and predictive modeling

Ambio Aims and scope Submit manuscript

Cite this article


Permafrost has been warming in the last decade at rates up to 0.39 °C 10 year−1, raising public concerns about the local and global impacts, such as methane emission. We used satellite data on atmospheric methane concentrations to retrieve information about methane emission in permafrost and non-permafrost environments in Siberia with different biogeochemical conditions in river valleys, thermokarst lakes, wetlands, and lowlands. We evaluated the statistical links with air temperature, precipitation, depth of seasonal thawing, and freezing and developed a statistical model. We demonstrated that by the mid-21st century methane emission in Siberian permafrost regions will increase by less than 20 Tg year−1, which is at the lower end of other estimates. Such changes will lead to less than 0.02 °C global temperature rise. These findings do not support the “methane bomb” concept. They demonstrate that the feedback between thawing Siberian wetlands and the global climate has been significantly overestimated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6


  • Anisimov, O. 2007. Potential feedback of thawing permafrost to the global climate system through methane emission. Environmental Research Letters 2: 91–98.

    Article  Google Scholar 

  • Anisimov, O., and R. Orttung. 2019. Climate change in Northern Russia through the prism of public perception. Ambio 48: 661–671.

    Article  Google Scholar 

  • Anisimov, O.A., V.A. Kokorev, and E.L. Zhiltcova. 2017. Arctic ecosystems and their services under changing climate: Predictive modelling assessment. Geographical Review 107: 108–124.

    Article  Google Scholar 

  • Anisimov, O.A., S.A. Lavrov, A.F. Zhirkov, and D.A. Kaverin. 2020. Permafrost data assimilation and reanalysis: Computational setup and model validation for North-European Russia and East Siberia. Russian Meteorology and Hydrology 45: 385–394.

    Google Scholar 

  • AWI. 2019. Global terrestrial network for permafrost (GTN-P) database. Potsdam: AWI.

    Google Scholar 

  • Biskaborn, B.K., S.L. Smith, J. Noetzli, H. Matthes, G. Vieira, D.A. Streletskiy, P. Schoeneich, V.E. Romanovsky, et al. 2019. Permafrost is warming at a global scale. Nature Communications 10: 264–278.

    Article  Google Scholar 

  • Bousquet, P., P. Ciais, J.B. Miller, E.J. Dlugokencky, D.A. Hauglustaine, C. Prigent, G.R. Van der Werf, P. Peylin, et al. 2006. Contribution of anthropogenic and natural sources to atmospheric methane variability. Nature 443: 439–443.

    Article  CAS  Google Scholar 

  • Callaghan, T.V., O.M. Shaduyko, and S.N. Kirpotin. 2021. Siberian environmental change. Special Issue. Ambio 50.

  • Christensen, T.R., S. Rysgaard, J. Bendtsen, B. Else, R.N. Glud, K.V. Huissteden, F.-J. W. Parmentier, T. Sachs, et al. 2017. Arctic carbon cycling. In Snow, water, ice and permafrost in the arctic (SWIPA). Arctic Monitoring and Assessment Programme (AMAP) report, 203–218. Oslo, AMAP publication.

  • Christensen, T.R., V.K. Arora, M. Gauss, L. Höglund-Isaksson, and F.-J.W. Parmentier. 2019. Tracing the climate signal: Mitigation of anthropogenic methane emissions can outweigh a large Arctic natural emission increase. Nature Scientific Reports 9: 1146–1153.

    Article  Google Scholar 

  • Dlugokencky, E.J., A.M. Crotwell, and J.W. Mund. 2019a. Atmospheric Methane Dry Air Mole Fractions from quasi-continuous measurements at Barrow, Alaska and Mauna Loa, Hawaii, 1986–2018, Version: 2019-03-04.

  • Dlugokencky, E.J., A.M. Crotwell, J.W. Mund, M.J. Crotwell, and K.W. Thoning. 2019b. Atmospheric Methane Dry Air Mole Fractions from the NOAA ESRL Carbon Cycle Cooperative Global Air Sampling Network, 1983–2018, Version: 2019-07.

  • Dyonisius, M.N., V.V. Petrenko, A.M. Smith, Q. Hua, B. Yang, J. Schmitt, J. Beck, B. Seth, et al. 2020. Old carbon reservoirs were not important in the deglacial methane budget. Science 367: 907–910.

    Article  CAS  Google Scholar 

  • Elberling, B., A. Michelsen, C. Schädel, E.A.G. Schuur, H.H. Christiansen, L. Berg, M.P. Tamstorf, and C. Sigsgaard. 2013. Long-term CO2 production following permafrost thaw. Nature Climate Change 3: 890–894.

    Article  CAS  Google Scholar 

  • Gruber, S. 2012. Derivation and analysis of a high-resolution estimate of globalpermafrost zonation. The Cryosphere 6: 221–233.

    Article  Google Scholar 

  • Hjort, J., O. Karjalainen, J. Aalto, S. Westermann, V.E. Romanovsky, F.E. Nelson, B. Etzelmüller, and M. Luoto. 2018. Degrading permafrost puts Arctic infrastructure at risk by mid-century. Nature Communications 9: 5147.

    Article  CAS  Google Scholar 

  • Hoffmann, S., S.D.H. Irl, and C. Beierkuhnlein. 2019. Predicted climate shifts within terrestrial protected areas worldwide. Nature Communications 10: 4787.

    Article  Google Scholar 

  • Höhne, N., T. Kuramochi, C. Warnecke, F. Röser, H. Fekete, M. Hagemann, T. Day, R. Tewari, et al. 2017. The Paris Agreement: resolving the inconsistency between global goals and national contributions. Climate Policy 17: 16–32.

    Article  Google Scholar 

  • Khvorostyanov, D.V., G. Krinner, P. Ciais, M. Heimann, and S.A. Zimov. 2008. Vulnerability of permafrost carbon to global warming. Part I: Model description and role of heat generated by organic matter decomposition. Tellus Series B-Chemical and Physical Meteorology 60: 250–264.

    Article  Google Scholar 

  • Kokorev, V.A., A.A. Yershova, and O.A. Anisimov. 2018. Permafrost web portal.

  • Masyagina, O.V., and O.V. Menyailo. 2020. The impact of permafrost on carbon dioxide and methane fluxes in Siberia: A meta-analysis. Environmental Research 182: 1–16.

    Article  Google Scholar 

  • Myhre, G., D. Shindell, F.-M. Bréon, W. Collins, J. Fuglestvedt, J. Huang, D. Koch, J.-F. Lamarque, et al. 2013. Anthropogenic and natural radiative forcing. In Climate change 2013: The physical science basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change, ed. T.F. Stocker, D. Qin, G.-K. Plattner, M. Tignor, S.K. Allen, J. Boschung, A. Nauels, Y. Xia, et al., 659–740. Cambridge: Cambridge University Press.

    Google Scholar 

  • Schuur, E.A.G., A.D. McGuire, C. Schädel, G. Grosse, J.W. Harden, D.J. Hayes, G. Hugelius, C.D. Koven, et al. 2015. Climate change and the permafrost carbon feedback. Nature 520: 171–179.

    Article  CAS  Google Scholar 

  • Schädel, C.E., E.A.G. Schuur, R. Bracho, B. Elberling, C. Knoblauch, H. Lee, Y. Luo, G.R. Shaver, et al. 2014. Circumpolar assessment of permafrost C quality and its vulnerability over time using long-term incubation data. Global Change Biology 20: 641–652.

    Article  Google Scholar 

  • Shiklomanov, N.I. 2005. From exploration to systematic investigation: Development of Geocryology in 19th- and early–20th-century Russia. Physical Geography 26: 249–263.

    Article  Google Scholar 

  • Spash, C.L. 2016. This changes nothing: The Paris agreement to ignore reality. Globalizations 13: 928–933.

    Article  Google Scholar 

  • Tarnocai, C., J.G. Canadell, E.A.G. Schuur, P. Kuhry, G. Mazhitova, and S. Zimov. 2009. Soil organic carbon pools in the northern circumpolar permafrost region. Global Biogeochemical Cycles. GB2023.

  • Tørstad, V., and H. Sælen. 2018. Fairness in the climate negotiations: What explains variation in parties’ expressed conceptions? Climate Policy 18: 642–654.

    Article  Google Scholar 

  • Walter Anthony, K., T. Schneider von Deimling, I. Nitze, S. Frolking, A. Emond, R. Daanen, P. Anthony, P. Lindgren, et al. 2018. 21st-century modeled permafrost carbon emissions accelerated by abrupt thaw beneath lakes. Nature Communications 9: 3262.

    Article  Google Scholar 

  • Walter Anthony, K.M., S.A. Zimov, G. Grosse, M.C. Jones, P.M. Anthony, F.S. Chapin III, J.C. Finlay, M.C. Mack, et al. 2014. A shift of thermokarst lakes from carbon sources to sinks during the Holocene epoch. Nature 511: 452–456.

    Article  Google Scholar 

  • Walter, K.M., S.A. Zimov, J.P. Chanton, D. Verbyla, and F.S. Chapin. 2006. Methane bubbling from Siberian thaw lakes as a positive feedback to climate warming. Nature 443: 71–75.

    Article  CAS  Google Scholar 

  • Whiteman, G., C. Hope, and P. Wadhams. 2013. Vast cost of Arctic change. Nature 499: 401–403.

    Article  CAS  Google Scholar 

  • Yurganov, L.N., I. Leifer, and C.L. Myhre. 2016. Seasonal and interannual variability of atmospheric methane over Arctic Ocean from satellite data. Problems in remote sensing of the Earth from space 13: 107–119.

    Google Scholar 

Download references


The authors are grateful to Professor F.E. Nelson for editing the English text. The study of climate change impacts in permafrost regions was supported by the Russian Foundation for Basic Research, Project 18-05-60005.

Author information

Authors and Affiliations


Corresponding author

Correspondence to Oleg Anisimov.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 1620 kb)

Rights and permissions

Reprints and Permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Anisimov, O., Zimov, S. Thawing permafrost and methane emission in Siberia: Synthesis of observations, reanalysis, and predictive modeling. Ambio 50, 2050–2059 (2021).

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: