Advertisement

Ambio

, Volume 47, Issue 6, pp 697–710 | Cite as

Invasive alien plant species dynamics in the Himalayan region under climate change

  • Pramod Lamsal
  • Lalit Kumar
  • Achyut Aryal
  • Kishor Atreya
Research Article

Abstract

Climate change will impact the dynamics of invasive alien plant species (IAPS). However, the ability of IAPS under changing climate to invade mountain ecosystems, particularly the Himalayan region, is less known. This study investigates the current and future habitat of five IAPS of the Himalayan region using MaxEnt and two representative concentration pathways (RCPs). Two invasive species, Ageratum conyzoides and Parthenium hysterophorus, will lose overall suitable area by 2070, while Ageratina adenophora, Chromolaena odorata and Lantana camara will gain suitable areas and all of them will retain most of the current habitat as stable. The southern Himalayan foothills will mostly conserve species ecological niches, while suitability of all the five species will decrease with increasing elevation. Such invasion dynamics in the Himalayan region could have impacts on numerous ecosystems and their biota, ecosystem services and human well-being. Trans-boundary response strategies suitable to the local context of the region could buffer some of the likely invasion impacts.

Keywords

Climate change Himalayas Invasive species MaxEnt Niche modelling 

Notes

Acknowledgement

We would like to thank the National Herbarium and Plant Laboratories (KATH), Godavari, Nepal for providing an opportunity to study and record spatial distribution datasets of selected invasive species through their archived herbarium sheets. We also appreciate Dr. Bharat Babu Shrestha, Dr. Chudamani Joshi and Mr. Rajesh Malla for making available some distribution dataset of selected invasive species. We are equally grateful to two anonymous reviewers for providing insightful comments on the earlier versions of this manuscript.

Supplementary material

13280_2018_1017_MOESM1_ESM.pdf (1 mb)
Supplementary material 1 (PDF 1075 kb)

References

  1. Adhikari, D., R. Tiwary, and S.K. Barik. 2015. Modelling hotspots for invasive alien plants in India. PLoS ONE 10: e0134665.CrossRefGoogle Scholar
  2. Alexander, J.M., J.J. Lembrechts, L.A. Cavieres, C. Daehler, S. Haider, C. Kueffer, G. Liu, K. McDougall, et al. 2016. Plant invasion into mountains and alpine ecosystems: Current status and future challenges. Alpine Botany 126: 89–103.CrossRefGoogle Scholar
  3. Alexander, J.M., C. Kueffer, C.C. Daehler, P.J. Edwards, A. Pauchard, T. Seipel, and MIREN Consortium. 2011. Assembly of nonnative floras along elevational gradients explained by directional ecological filtering. Proceedings of the National Academy of Sciences 108: 656–667.CrossRefGoogle Scholar
  4. Andersen, K.M., B.J. Naylor, B.A. Endress, and C.G. Parks. 2015. Contrasting distribution patterns of invasive and naturalized non-native species along environmental gradients in a semi-arid montane ecosystem. Applied Vegetation Science 18: 683–693.CrossRefGoogle Scholar
  5. Aryal, A., U.B. Shrestha, W. Ji, S.B. Ale, S. Shreshta, T. Ingty, T. Maraseni, G. Cokcfield, and D. Raubenheimer. 2016. Predicting the distribution of predator (snow leopard) and prey (blue sheep) under climate change in the Himalaya. Ecology and Evolution 6: 4065–4075.CrossRefGoogle Scholar
  6. Aryal, A., K.P. Acharya, U.B. Shrestha, M. Dhakal, D. Raubenhiemer, and W. Wright. 2017. Global lessons from successful rhinoceros conservation in Nepal. Conservation Biology 31: 1494–1497.CrossRefGoogle Scholar
  7. Averett, J.P., B. McCune, C.G. Parks, B.J. Naylor, T. DelCurto, and R. Mata-Gonzalez. 2016. Non-native plant invasion along elevation and canopy closure gradients in a middle rocky Mountain ecosystem. PLoS ONE 11: e0147826.CrossRefGoogle Scholar
  8. Baldwin, R.A. 2009. Use of maximum entropy modelling in wildlife research. Entropy 11: 854–866.CrossRefGoogle Scholar
  9. Barni, E., G. Bacaro, S. Falzoi, F. Spanna, and C. Siniscalco. 2012. Establishing climatic constraints shaping the distribution of alien plant species along the elevation gradient in the Alps. Plant Ecology 213: 757–767.CrossRefGoogle Scholar
  10. Beaumont, L.J., R.V. Gallagher, W. Thuiller, P.O. Downey, M.R. Leishman, and L. Hughes. 2009. Different climate envelopes among invasive populations may lead to underestimations of current and future biological invasions. Diversity and Distribution 15: 409–420.CrossRefGoogle Scholar
  11. Becker, T., H. Dietz, R. Billeter, H. Buschmann, and P.J. Edwards. 2005. Altitudinal distribution of alien plant species in the Swiss Alps. Perspective in Plant Ecology, Evolution and Systematics 7: 173–183.CrossRefGoogle Scholar
  12. Benito, B., J. Lorite, and J. Penas. 2011. Simulating potential effects of climatic warming on altitudinal patterns of key species in Mediterranean-alpine ecosystems. Climatic Change 108: 471–483.CrossRefGoogle Scholar
  13. Bezeng, B.S., I. Morales-Castilla, M. van der Bank, K. Yessoufou, B.H. Daru, and T.J. Davies. 2017. Climate change may reduce the spread of non-native species. Ecosphere 8: e01694.CrossRefGoogle Scholar
  14. Bhattarai, K.R., E. Inger, and S.C.S. Maren. 2014. Biodiversity and invasibility: Distribution patterns of invasive plant species in the Himalayas, Nepal. Journal of Mountain Science 11: 688–696.CrossRefGoogle Scholar
  15. Chen, C., Q.H. Wang, J.Y. Wu, D. Huang, W.H. Zhang, N. Zhao, X.F. Li, and L.X. Wang. 2017. Historical introduction, geographical distribution, and biological characteristics of alien plants in China. Biodiversity and Conservation 26: 353–381.CrossRefGoogle Scholar
  16. Chettri, N., B. Shakya, R. Thapa, and E. Sharma. 2008. Status of a protected area system in the Hindu Kush-Himalayas: An analysis of PA coverage. The International Journal of Biodiversity Science and Management 4: 164–178.CrossRefGoogle Scholar
  17. Clements, D.R., and A. Ditommaso. 2011. Climate change and weed adaptation: Can evolution of invasive plants lead to greater range expansion than forecasted? Weed Research 51: 227–240.CrossRefGoogle Scholar
  18. Cruz-Cardenas, G., L. Lopez-Malta, J.L. Villasenor, and E. Ortiz. 2014. Potential species distribution modelling and the use of principal component analysis as predictor variables. Revista Mexicana de Biodiversidad 85: 189–199.CrossRefGoogle Scholar
  19. Daehler, C.C. 2003. Performance comparisons of co-occurring native and alien invasive plants: Implications for conservation and restoration. Annual Review of Ecology and Systematics 34: 183–211.CrossRefGoogle Scholar
  20. Dhar, P.A., and Z.A. Reshi. 2015. Do alien plant invasions cause biotic homogenization of terrestrial ecosystems in the Kashmir Valley, India? Tropical Ecology 56: 111–123.Google Scholar
  21. Dromann, C.F., J. Elith, S. Bahcer, C. Buchmann, G. Carl, G. Carre, J.R.G. Marquez, B. Gruber, et al. 2012. Collinearity: A review of methods to deal with it and a simulation study evaluating their performance. Ecography 36: 27–46.CrossRefGoogle Scholar
  22. Duan, R.Y., X.Q. Kong, M.Y. Huang, W.Y. Fan, and Z.G. Wang. 2014. The predictive performance and stability of six species distribution models. PLoS ONE 9: e112764.CrossRefGoogle Scholar
  23. Early, R.B.A., J.S. Bradley, J.J. Dukes, J.D. Lawler, D.M. Olden, P. Blumenthal, E.D.Grosholz Gonzalez, et al. 2016. Global threats from invasive alien species in the twenty-first century and national response capacities. Nature Communication 7: 12485.CrossRefGoogle Scholar
  24. Elith, J. 2000. Quantitative methods for modelling species habitat: Comparative performance and an application to Australian plants. In Quantitative methods for conservation biology, ed. S. Ferson, and M. Burgman, 39–58. New York: Springer.CrossRefGoogle Scholar
  25. Elith, J., S.J. Phillips, T. Hastie, M. Dudik, Y.E. Chee, and C.J. Yates. 2011. A statistical explanation of Maxent for ecologist. Diversity and Distribution 17: 43–57.CrossRefGoogle Scholar
  26. Evangelista, P.H., S. Kumar, T.J. Stohlgren, C.S. Jarnevich, A.W. Crall, J.B. Norman, and D.T. Barnett. 2008. Modelling invasion for a habitat generalist and a specialist plant species. Diversity and Distribution 14: 808–817.CrossRefGoogle Scholar
  27. Fandohan, A.B., A.M. Oduor, A.I. Sodé, L. Wu, A. Cuni-Sanchez, E. Assédé, and G.N. Gouwakinnou. 2015. Modeling vulnerability of protected areas to invasion by Chromolaena odorata under current and future climates. Ecosystem Health and Sustainability 1: 20.CrossRefGoogle Scholar
  28. Funk, J.L., V. Matzek, M. Bernhardt, and D. Johnson. 2014. Broadening the case for invasive species management to include impacts on ecosystem services. BioScience 64: 58–63.CrossRefGoogle Scholar
  29. Goncalves, E., I. Herrera, M. Duarte, R.O. Bustamante, M. Lampo, G. Velasquez, G.P. Sharma, and S. Garcia-Rangel. 2014. Global invasion of Lantana camara: Has the climatic niche been conserved across continents? PLoS ONE 9: e111468.CrossRefGoogle Scholar
  30. Guo, H., S.J. Mazer, X. Xu, X. Luo, K. Huang, and X. Xu. 2017. Biological invasions in nature reserves in China. In Biological invasions and its management in China, vol. 11, ed. F. Wan, et al., 125–147., Invading nature—Springer series in invasion ecology New York: Springer.CrossRefGoogle Scholar
  31. Grice, A.C. 2006. The impacts of invasive plant species on the biodiversity of Australian rangelands. The Rangeland Journal 28: 27–35.CrossRefGoogle Scholar
  32. Haider, S., J. Alexander, H. Dietz, L. Trepl, P.J. Edwards, and C. Kueffer. 2010. The role of bioclimatic origin, residence time and habitat context in shaping non-native plant distributions along altitudinal gradient. Biological Invasion 12: 4003–4018.CrossRefGoogle Scholar
  33. Hellmann, J.J., J.E. Byers, B.G. Bierwagen, and J.S. Dukes. 2008. Five potential impacts of climate change for invasive species. Conservation Biology 22: 534–543.CrossRefGoogle Scholar
  34. Higgins, S.I., and D.M. Richardson. 2014. Invasive plants have broader physiological niches. Proceeding of the National Academy of Sciences 111: 10610–10614.CrossRefGoogle Scholar
  35. IPCC. 2013. Summary for Policymakers. In: Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change (Stocker TF, Qin D, Plattner GK, Tignor M, Allen SK, Boschung J, Nauels A, Xia Y, Bex V, Midgley PM (eds.). Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA.Google Scholar
  36. Jauni, M., S. Gripenberg, and S. Ramula. 2015. Non-native plant species benefits from disturbance: A meta-analysis. Oikos 124: 122–129.CrossRefGoogle Scholar
  37. Jayanarayanan, S., R. Krishnan, A.B. Shrestha, R. Rajbhandari, and R.Y. Guo. 2017. Downscaled climate change projections for the Hindu Kush Himalayan region using CORDEX South Asia regional climate models. Advances in Climate Change Research 8: 185–198.CrossRefGoogle Scholar
  38. Jones, C.C. 2012. Challenges in predicting the future distribution of invasive plant species. Forest Ecology and Management 284: 69–77.CrossRefGoogle Scholar
  39. Joshi C., J. de Leeuw, and A.K. Skidmore. 2006. Upscaling species invasion patterns from local to regional for forest ecosystem management. ISPRS mid-term symposium: “Remote sensing: from pixel to processes”, Commission VI, WG VI/7; 8-11 May 2006, the Netherlands.Google Scholar
  40. Kannan, R., C.M. Shackleton, and R.U. Shaanker. 2013. Playing with the forest: invasive alien plants, policy and protected areas in India. Current Science 104: 1159–1165.Google Scholar
  41. Knutti, R., and J. Sedlacek. 2013. Robustness and uncertainties in the new CMIP5 climate model projections. Nature Climate Change 3: 369–373.CrossRefGoogle Scholar
  42. Lamsal, P., L. Kumar, F. Shabani, and K. Atreya. 2017. The greening of the Himalaya and Tibetan Plateau under climate change. Global and Planetary Change 159: 77–92.CrossRefGoogle Scholar
  43. Lembrechts, J.J., A. Milbau, and I. Nijs. 2014. Alien roadside species more easily invade alpine than lowland plant communities in a subarctic mountain ecosystem. PLoS ONE 9: e89664.CrossRefGoogle Scholar
  44. Lin, W., G. Zhou, X. Cheng, and R. Xu. 2007. Fast economic development accelarates biological invasion in China. PLoS ONE 11: e1208.CrossRefGoogle Scholar
  45. Liu, C., P.M. Berry, T.P. Dawson, and R.G. Pearson. 2005a. Selecting thresholds of occurrence in the prediction of species distribution. Ecograhpy 28: 385–393.CrossRefGoogle Scholar
  46. Liu, C., M. White, and G. Newell. 2013. Selecting thresholds for the prediction of species occurrence with presence only data. Journal of Biogeography 40: 778–789.CrossRefGoogle Scholar
  47. Liu, J., S.C. Liang, F.H. Liu, R.Q. Wang, and M. Dong. 2005b. Invasive alien plant species in China: Regional distribution pattern. Diversity and Distribution 11: 341–347.CrossRefGoogle Scholar
  48. Mack, R.N., D. Simberloff, W.M. Lonsdale, H. Evans, M. Clout, and F.A. Bazzaz. 2000. Biotic invasion: Causes, epidemiology, global consequences, and control. Ecological Applications 10: 689–710.CrossRefGoogle Scholar
  49. Mainali, K.P., D.L. Warren, K. Dhileepan, A. McConnachie, L. Strathie, G. Hassan, D. Karki, B.B. Shrestha, and C. Parmesan. 2015. Projecting future expansion of invasive species: Comparing and improving methodologies for species distribution methods. Global Change Biology 21: 4464–4480.CrossRefGoogle Scholar
  50. Mainka, S.A., and G.W. Howard. 2010. Climate change and invasive species: Double jeopardy. Integrative Zoology 5: 102–111.CrossRefGoogle Scholar
  51. Marini, L., A. Battisti, E. Bona, G. Federici, F. Martini, M. Pautasso, and P.E. Hulme. 2012. Alien and native plant life-forms respond differently to human and climate pressures. Global Ecology and Biogeography 21: 534–544.CrossRefGoogle Scholar
  52. Marini, L., K.J. Gaston, F. Prosser, and P.E. Hulme. 2009. Contrasting response of native and alien plant species richness to environmental energy and human impact along alpine elevation gradient. Global Ecology and Biogeography 18: 652–661.CrossRefGoogle Scholar
  53. Maron, J.L., M. Vila, R. Bommarco, S. Elmendorf, and P. Beardsley. 2004. Rapid Evolution of an Invasive Plant. Ecological Monographs 72: 261–280.CrossRefGoogle Scholar
  54. Masters, G., and L. Norgrove. 2010. Climate change and invasive alien species. CABI Working Paper 1, 30 pp.Google Scholar
  55. McDougall, K.L., A.A. Khuroo, L.L. Loope, C.G. Parks, A. Pauchard, Z.A. Reshi, I. Rushworth, and C. Keuffer. 2011. Plant invasions in mountains: global lessons for better management. Mountain Research and Development 31: 380–387.CrossRefGoogle Scholar
  56. McNeely, J. 2001. Invasive species: a costly catastrophe for native biodiversity. Land Use and Water Resources Research 1: 1–10.Google Scholar
  57. Mishra, V., D. Kumar, A.R. Ganguly, J. Sanjay, M. Majumdar, R. Krishnan, and R.P. Shah. 2014. Reliability of regional and global climate models to simulate precipitation extremes over India. Journal of Geophysical Research 119: 9301–9323.Google Scholar
  58. Murphy, S.T., N. Subedi, S.R. Jnawali, and B.R. Lamichane. 2013. Invasive mikania in Chitwan National Park, Nepal: The threat to the greater one-horned rhinoceros (Rhinoceros unicornis) and factors driving the invasion. Oryx 47: 361–368.CrossRefGoogle Scholar
  59. Pearce, J., and S. Ferrier. 2000. An evaluation of alternative algorithms for fitting species distribution models using logistic regression. Ecological Modelling 128: 127–147.CrossRefGoogle Scholar
  60. Phillips, S., R. Anderson, and R. Schapire. 2006. Maximum entropy modeling of species geographic distributions. Ecological Modelling 190: 231–259.CrossRefGoogle Scholar
  61. Price, M.E. 2006. Global change in mountain regions. Dunkow: Sapiens Publishing.Google Scholar
  62. Priyanka, N., and P.K. Joshi. 2013. Effects of climate change on invasion potential distribution of Lantana camara. Journal of Earth Science and Climate Change 4: 164.Google Scholar
  63. Pysek, P., V. Jarosik, P.E. Hulme, J. Pergl, M. Hejda, U. Schaffner, and M. Vila. 2012. A global assessment of invasive plant impacts on resident species, communities and ecosystems: The interaction of impact measures, invading species’ traits and environment. Global Change Biology 18: 1725–1737.CrossRefGoogle Scholar
  64. Ren, Y.Y., G.Y. Ren, X.B. Sun, A.B. Shrestha, Q.L. You, Y.J. Zhan, R. Rajbhandari, P.F. Zhang, et al. 2017. Observed changes in surface air temperature and precipitation in the Hindu Kush Himalayan region over the last 100-plus years. Advances in Climate Change Research 8: 148–156.CrossRefGoogle Scholar
  65. Richardson, D.M., and M. Rejmanek. 2011. Trees and shrubs as invasive alien species—a global review. Diversity and Distribution 17: 788–809.CrossRefGoogle Scholar
  66. Saurez-Mota, M.E., E. Oritz, J.L. Villasenor, and F.J. Espinosa-Garcia. 2016. Ecological niche modeling of invasive plant species according to invasion status and management needs: The case of Chromolaena odorata (Asteraceae) in South Africa. Polish Journal of Ecology 64: 369–383.CrossRefGoogle Scholar
  67. Seipel, T., J.M. Alexander, P.J. Edwards, and C. Kueffer. 2016. Range limits and population dynamics of non native plants spreading along elevation gradient. Perspective in Plant Ecology, Evolution and Systematics 20: 46–55.CrossRefGoogle Scholar
  68. Sharmila, S., S. Joseph, A.K. Sahai, S. Abhilash, and R. Chattopadhyay. 2015. Future projection of Indian summer monsoon variability under climate change scenario: An assessment from CMIP5 climate models. Global and Planet Change 124: 62–78.CrossRefGoogle Scholar
  69. Shrestha, B.B., A. Shabbir, and S.W. Adkins. 2015. Parthenium hysterophorus in Nepal: A review of its weed status and possibilities for management. Weed Research 55: 132–144.CrossRefGoogle Scholar
  70. Song, M., C. Zhou, and H. Ouyang. 2004. Distributions of dominant tree species on the Tibetan Plateau under current and future climate scenarios. Mountain Research and Development 24: 166–173.CrossRefGoogle Scholar
  71. Stott, P.A., and J.A. Kettleborough. 2002. Origin and estimates of uncertainty in predictions of twenty first century temperature rise. Nature 416: 723–726.CrossRefGoogle Scholar
  72. Su, J., A. Aryal, Z. Nan, and W. Ji. 2015. Climate change-induced range expansion of a subterranean rodent: Implications for rangeland management in Qinghai-Tibetan Plateau. PLoS ONE 10: e0138969.CrossRefGoogle Scholar
  73. Swets, K. 1988. Measuring the accuracy of diagnostic systems. Science 240: 1285–1293.CrossRefGoogle Scholar
  74. Torchin, M.E., and C.E. Mitchell. 2004. Parasites, pathogens, and invasion by plants and animals. Frontiers in Ecology and Environment 2: 183–190.CrossRefGoogle Scholar
  75. Urban, M.C., G. Bocedi, A.P. Hendry, J.B. Mihoub, G. Péer, A. Singer, J.R. Bridle, L.G. Crozier, et al. 2016. Improving the forecast for biodiversity under climate change. Science 353: aad8464.CrossRefGoogle Scholar
  76. Watanabe, M., T. Suzuki, R. O'ishi, Y. Komuro, S. Watanabe, S. Emori, T. Takemura, M. Chikira, et al. 2010. Improved climatic simulation by MIROC5: Mean states, variability, and climatic sensitivity. Journal of Climate 23: 6312–6335.Google Scholar
  77. West, A.M., S. Kumar, C.S. Brown, T.J. Stohlgren, and J. Bromberg. 2016. Field validation of an invasive species Maxent model. Ecological Informatics 36: 126–134.CrossRefGoogle Scholar
  78. Whitney, K.D., and C.A. Gabler. 2008. Rapid evolution in invasive species, ‘invasive traits’, and receipient communities: Challenges for predicting invasive potential. Diversity and Distribution 14: 569–580.CrossRefGoogle Scholar
  79. Xiaodan, W., C. Genwei, and Z. Xianghao. 2011. Assessing potential impacts of climatic change on subalpine forests on the eastern Tibetan Plateau. Climatic Change 108: 225–241.CrossRefGoogle Scholar
  80. Xu, H., S. Qiang, P. Genovesi, H. Ding, J. Wu, L. Meng, Z. Han, J. Miao, et al. 2012. An inventory of invasive alien species in China. NeoBiota 15: 1–26.CrossRefGoogle Scholar
  81. Xu, W., Y. Xiao, J. Zhang, W. Yang, L. Zhang, V. Hull, Z. Wang, H. Zheng, et al. 2017. Strengthening protected areas for biodiversity and ecosystem services in China. Proceedings of the National Academy of Sciences 114: 1601–1606.CrossRefGoogle Scholar
  82. Zefferman, E., J.T. Stevens, G.K. Charles, M. Dunbar-Irwin, T. Emam, S. Fick, L.V. Morales, K.M. Wolf, et al. 2015. Plant communities in harsh sites are less invaded: A summary of observations and proposed explanations. AoB PLANTS 7: plv056.CrossRefGoogle Scholar
  83. Zhang, W., D. Yin, D. Huang, N. Du, J. Liu, W. Guo, and R. Wang. 2015. Altitudinal patterns illustrate the invasion mechanisms of alien plants in temperate mountain forests of northern China. Forest Ecology and Management 351: 1–8.CrossRefGoogle Scholar
  84. Zhao, X., W. Liu, and M. Zhou. 2012. Lack of local adaptation of invasive crofton weed (Ageratina adenophora) in different climatic areas of Yunnan province, China. Journal of Plant Ecology 6: 316–322.CrossRefGoogle Scholar
  85. Zhu, L., O.J. Sun, W. Sang, Z. Li, and K. Ma. 2007. Predicting the spatial distribution of an invasive plant species (Eupatorium adenophorum) in China. Landscape Ecology 22: 1143–1154.CrossRefGoogle Scholar

Copyright information

© Royal Swedish Academy of Sciences 2018

Authors and Affiliations

  1. 1.School of Environmental and Rural ScienceUniversity of New EnglandArmidaleAustralia
  2. 2.Department of Forest and Resource ManagementToi Ohomai Institute of TechnologyRotoruaNew Zealand
  3. 3.Asia Network for Sustainable Agriculture and BioresourcesKathmanduNepal

Personalised recommendations