Skip to main content

Advertisement

Log in

A fuzzy logic expert system for evaluating policy progress towards sustainability goals

  • Research Article
  • Published:
Ambio Aims and scope Submit manuscript

Abstract

Evaluating progress towards environmental sustainability goals can be difficult due to a lack of measurable benchmarks and insufficient or uncertain data. Marine settings are particularly challenging, as stakeholders and objectives tend to be less well defined and ecosystem components have high natural variability and are difficult to observe directly. Fuzzy logic expert systems are useful analytical frameworks to evaluate such systems, and we develop such a model here to formally evaluate progress towards sustainability targets based on diverse sets of indicators. Evaluation criteria include recent (since policy enactment) and historical (from earliest known state) change, type of indicators (state, benefit, pressure, response), time span and spatial scope, and the suitability of an indicator in reflecting progress toward a specific objective. A key aspect of the framework is that all assumptions are transparent and modifiable to fit different social and ecological contexts. We test the method by evaluating progress towards four Aichi Biodiversity Targets in Canadian oceans, including quantitative progress scores, information gaps, and the sensitivity of results to model and data assumptions. For Canadian marine systems, national protection plans and biodiversity awareness show good progress, but species and ecosystem states overall do not show strong improvement. Well-defined goals are vital for successful policy implementation, as ambiguity allows for conflicting potential indicators, which in natural systems increases uncertainty in progress evaluations. Importantly, our framework can be easily adapted to assess progress towards policy goals with different themes, globally or in specific regions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Adriaenssens, V., B.D. Baets, P.L.M. Goethals, and N.D. Pauw. 2004. Fuzzy rule-based models for decision support in ecosystem management. Science of the Total Environment 319: 1–12. https://doi.org/10.1016/S0048-9697(03)00433-9.

    Article  CAS  Google Scholar 

  • Akçakaya, H.R., S. Ferson, M.A. Burgman, D.A. Keith, G.M. Mace, and C.R. Todd. 2000. Making consistent IUCN classifications under uncertainty. Conservation Biology 14: 1001–1013.

    Article  Google Scholar 

  • Akçakaya, H.R., S. Ferson, M.A. Burgman, D.A. Keith, G.M. Mace, and C.R. Todd. 2012. Commentary: IUCN classifications under uncertainty. Environmental Modelling & Software 38: 119–121. https://doi.org/10.1016/j.envsoft.2012.05.009.

    Article  Google Scholar 

  • Andersen, J.H., K. Dahl, C. Göke, M. Hartvig, C. Murray, A. Rindorf, H. Skov, M. Vinther, et al. 2014. Integrated assessment of marine biodiversity status using a prototype indicator-based assessment tool. Frontiers in Marine Science. https://doi.org/10.3389/fmars.2014.00055.

    Article  Google Scholar 

  • Andriantiatsaholiniaina, L.A., V.S. Kouikoglou, and Y.A. Phillis. 2004. Evaluating strategies for sustainable development: Fuzzy logic reasoning and sensitivity analysis. Ecological Economics 48: 149–172. https://doi.org/10.1016/j.ecolecon.2003.08.009.

    Article  Google Scholar 

  • Atkins, J.P., D. Burdon, M. Elliott, and A.J. Gregory. 2011. Management of the marine environment: Integrating ecosystem services and societal benefits with the DPSIR framework in a systems approach. Marine Pollution Bulletin 62: 215–226. https://doi.org/10.1016/j.marpolbul.2010.12.012.

    Article  CAS  Google Scholar 

  • Ayyub, B.M. 2001. Elicitation of expert opinions for uncertainty and risks. Boca Raton: CRC Press.

    Book  Google Scholar 

  • Backer, H., and J.-M. Leppänen. 2008. The HELCOM system of a vision, strategic goals and ecological objectives: Implementing an ecosystem approach to the management of human activities in the Baltic Sea. Aquatic Conservation: Marine and Freshwater Ecosystems 18: 321–334. https://doi.org/10.1002/aqc.851.

    Article  Google Scholar 

  • Blane, J.M., and R. Jaakson. 1994. The Impact of Ecotourism Boats on the St Lawrence Beluga Whales. Environmental Conservation 21: 267–269.

    Article  Google Scholar 

  • Brotz, L. 2011. Changing jellyfish populations: Trends in Large Marine Ecosystems. Fisheries Centre Research Reports 19. The University of British Columbia.

  • Brotz, L., W.W.L. Cheung, K. Kleisner, E. Pakhomov, and D. Pauly. 2012. Increasing jellyfish populations: Trends in large marine ecosystems. Hydrobiologia 690: 3–20. https://doi.org/10.1007/s10750-012-1039-7.

    Article  Google Scholar 

  • Burgman, M. 2005. Risks and decisions for conservation and environmental management. New York: Cambridge University Press.

    Book  Google Scholar 

  • Canadian Council of Resource Ministers. 2014. Fifth National Report to the United Nations Convention on Biological Diversity. Government of Canada.

  • Cheung, W.W.L., T.J. Pitcher, and D. Pauly. 2005. A fuzzy logic expert system to estimate intrinsic extinction vulnerabilities of marine fishes to fishing. Biological Conservation 124: 97–111. https://doi.org/10.1016/j.biocon.2005.01.017.

    Article  Google Scholar 

  • Cisneros-Montemayor, A.M., W.W.L. Cheung, K. Bodtker, L. Teh, N. Steiner, M. Bailey, C. Hoover, and U.R. Sumaila. 2017. Towards an integrated database on Canadian ocean resources: Benefits, current states, and research gaps. Canadian Journal of Fisheries and Aquatic Sciences 74: 65–74. https://doi.org/10.1139/cjfas-2015-0573.

    Article  Google Scholar 

  • Cornelissen, A., J. van den Berg, W. Koops, and U. Kaymak. 2003. Elicitation of expert knowledge for fuzzy evaluation of agricultural production systems. Agriculture, Ecosystems & Environment 95: 1–18.

    Article  Google Scholar 

  • Cox, E. 1999. The fuzzy systems handbook: A practitioners guide to building, using, and maintaining fuzzy systems. San Diego: AP Professional.

    Google Scholar 

  • Curtin, R., and R. Prellezo. 2010. Understanding marine ecosystem based management: A literature review. Marine Policy 34: 821–830.

    Article  Google Scholar 

  • Dale, V.H., and S.C. Beyeler. 2001. Challenges in the development and use of ecological indicators. Ecological Indicators 1: 3–10.

    Article  Google Scholar 

  • Doran, G.T. 1981. There’s a S.M.A.R.T. way to write management’s goals and objectives. Management Review 70: 35–36.

    Google Scholar 

  • Froese, R. 2004. Keep it simple: Three indicators to deal with overfishing. Fish and Fisheries 5: 86–91.

    Article  Google Scholar 

  • Fulton, E., A. Smith, and A. Punt. 2005. Which ecological indicators can robustly detect effects of fishing? ICES Journal of Marine Science 62: 540–551. https://doi.org/10.1016/j.icesjms.2004.12.012.

    Article  Google Scholar 

  • Gaines, B.R., and M.L. Shaw. 1986. Induction of inference rules for expert systems. Fuzzy Sets and Systems 18: 315–328.

    Article  Google Scholar 

  • Halpern, B.S., C. Longo, D. Hardy, K.L. McLeod, J.F. Samhouri, S.K. Katona, K. Kleisner, S.E. Lester, et al. 2012. An index to assess the health and benefits of the global ocean. Nature 488: 615–620. https://doi.org/10.1038/nature11397.

    Article  CAS  Google Scholar 

  • Heink, U., and I. Kowarik. 2010. What are indicators? On the definition of indicators in ecology and environmental planning. Ecological Indicators 10: 584–593. https://doi.org/10.1016/j.ecolind.2009.09.009.

    Article  Google Scholar 

  • IPCC. 2014. Climate change 2014: Synthesis report. Contribution of Working Groups I, II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Geneva: IPCC.

  • Jones, M.C., and W.W.L. Cheung. 2017. Using fuzzy logic to determine the vulnerability of marine species to climate change. Global Change Biology. https://doi.org/10.1111/gcb.13869.

    Article  Google Scholar 

  • Joppa, L.N., B. O’Connor, P. Visconti, C. Smith, J. Geldmann, M. Hoffmann, J.E.M. Watson, S.H.M. Butchart, et al. 2016. Filling in biodiversity threat gaps. Science 352: 416–418.

    Article  CAS  Google Scholar 

  • Keith, D.A., J.P. Rodríguez, K.M. Rodríguez-Clark, E. Nicholson, K. Aapala, A. Alonso, M. Asmussen, S. Bachman, et al. 2013. Scientific foundations for an IUCN Red List of Ecosystems. Edited by Matteo Convertino. PLoS ONE 8: e62111. https://doi.org/10.1371/journal.pone.0062111.

    Article  CAS  Google Scholar 

  • Mackinson, S. 2000. An adaptive fuzzy expert system for predicting structure, dynamics and distribution of herring shoals. Ecological Modelling 126: 155–178.

    Article  Google Scholar 

  • Mackinson, S. 2001. Integrating local and scientific knowledge: An example in fisheries science. Environmental Management 27: 533–545. https://doi.org/10.1007/s0026702366.

  • Marques, A., H.M. Pereira, C. Krug, P.W. Leadley, P. Visconti, S.R. Januchowski-Hartley, R.M. Krug, R. Alkemade, et al. 2014. A framework to identify enabling and urgent actions for the 2020 Aichi Targets. Basic and Applied Ecology 15: 633–638. https://doi.org/10.1016/j.baae.2014.09.004.

    Article  Google Scholar 

  • Martin, T.G., M.A. Burgman, F. Fidler, P.M. Kuhnert, S. Low-Choy, M. Mcbride, and K. Mengersen. 2012. Eliciting expert knowledge in conservation science. Conservation Biology 26: 29–38. https://doi.org/10.1111/j.1523-1739.2011.01806.x.

    Article  Google Scholar 

  • Mcbride, M., and M. Burgman. 2012. What is expert knowledge, how is such knowledge gathered, and how do we use it to address questions in landscape ecology? In Expert knowledge and its application in landscape ecology, ed. A.H. Perera, C.A. Drew, and C.J. Johnson, 11–38. New York: Springer. https://doi.org/10.1007/978-1-4614-1034-8.

    Chapter  Google Scholar 

  • Morgan, M.G. 2014. Use (and abuse) of expert elicitation in support of decision making for public policy. Proceedings of the National Academy of Sciences 111: 7176–7184.

    Article  CAS  Google Scholar 

  • Newton, A.C. 2010. Use of a Bayesian network for Red Listing under uncertainty. Environmental Modelling & Software 25: 15–23. https://doi.org/10.1016/j.envsoft.2009.07.016.

    Article  Google Scholar 

  • Nilsson, M., H. Griggs, and M. Visbeck. 2016. Map the interactions between sustainable development goals. Nature 534: 320–322.

    Article  Google Scholar 

  • Pereira, H.M., S. Ferrier, M. Walters, G.N. Geller, R.H.G. Jongman, R.J. Scholes, M.W. Bruford, N. Brummitt, et al. 2013. Essential biodiversity variables. Science 339: 277–278. https://doi.org/10.1126/science.1229931.

    Article  CAS  Google Scholar 

  • Perera, A.H., C.A. Drew, and C.J. Johnson (eds.). 2012. Expert knowledge and its application in landscape ecology. New York, NY: Springer. https://doi.org/10.1007/978-1-4614-1034-8.

    Book  Google Scholar 

  • Phillis, Y.A., and L.A. Andriantiatsaholiniaina. 2001. Sustainability: An ill-defined concept and its assessment using fuzzy logic. Ecological Economics 37: 435–456.

    Article  Google Scholar 

  • Ricard, D., C. Minto, O.P. Jensen, and J.K. Baum. 2012. Examining the knowledge base and status of commercially exploited marine species with the RAM Legacy Stock Assessment Database. Fish and Fisheries 13: 380–398. https://doi.org/10.1111/j.1467-2979.2011.00435.x.

    Article  Google Scholar 

  • Shin, Y.-J., A. Bundy, L.J. Shannon, M. Simier, M. Coll, E.A. Fulton, J.S. Link, D. Jouffre, et al. 2010. Can simple be useful and reliable? Using ecological indicators to represent and compare the states of marine ecosystems. ICES Journal of Marine Science 67: 717–731.

    Article  Google Scholar 

  • Singh, G.G., A.M. Cisneros-Montemayor, W. Swartz, W. Cheung, J.A. Guy, T.-A. Kenny, C.J. McOwen, R. Asch, et al. 2017a. A rapid assessment of co-benefits and trade-offs among sustainable development goals. Marine Policy. https://doi.org/10.1016/j.marpol.2017.05.030.

    Article  Google Scholar 

  • Singh, G.G., J. Sinner, J. Ellis, M. Kandlikar, B.S. Halpern, T. Satterfield, and K.M. Chan. 2017b. Mechanisms and risk of cumulative impacts to coastal ecosystem services: An expert elicitation approach. Journal of Environmental Management 199: 229–241.

    Article  Google Scholar 

  • Steffen, W., K. Richardson, J. Rockstrom, S.E. Cornell, I. Fetzer, E.M. Bennett, R. Biggs, S.R. Carpenter, et al. 2015. Planetary boundaries: Guiding human development on a changing planet. Science 347: 1259855. https://doi.org/10.1126/science.1259855.

    Article  CAS  Google Scholar 

  • Svarstad, H., L.K. Petersen, D. Rothman, H. Siepel, and F. Wätzold. 2008. Discursive biases of the environmental research framework DPSIR. Land Use Policy 25: 116–125. https://doi.org/10.1016/j.landusepol.2007.03.005.

    Article  Google Scholar 

  • Tallis, H., P.S. Levin, M. Ruckelshaus, S.E. Lester, K.L. McLeod, D.L. Fluharty, and B.S. Halpern. 2010. The many faces of ecosystem-based management: Making the process work today in real places. Marine Policy 34: 340–348. https://doi.org/10.1016/j.marpol.2009.08.003.

    Article  Google Scholar 

  • Tittensor, D.P., M. Walpole, S.L.L. Hill, D.G. Boyce, G.L. Britten, N.D. Burgess, S.H.M. Butchart, P.W. Leadley, et al. 2014. A mid-term analysis of progress toward international biodiversity targets. Science 346: 241–244. https://doi.org/10.1126/science.1257484.

    Article  CAS  Google Scholar 

  • Turnhout, E., M. Hisschemöller, and H. Eijsackers. 2007. Ecological indicators: Between the two fires of science and policy. Ecological Indicators 7: 215–228. https://doi.org/10.1016/j.ecolind.2005.12.003.

    Article  Google Scholar 

  • UN. 2015. Transforming our world: The 2030 Agenda for Sustainable Development. A/Res/70/1. UN General Assembly. New York: United Nations.

  • UNEP. 2010. The strategic plan for biodiversity 20112020 and the Aichi Biodiversity Targets. Conference of the Parties to the Convention on Biological Diversity UNEP/CBD/COP/DEC/X/2. Nagoya, Japan.

  • Uusitalo, L., H. Blanchet, J.H. Andersen, O. Beauchard, T. Berg, S. Bianchelli, A. Cantafaro, J. Carstensen, et al. 2016. Indicator-based assessment of marine biological diversity-lessons from 10 case studies across the European Seas. Frontiers in Marine Science. https://doi.org/10.3389/fmars.2016.00159.

    Article  Google Scholar 

  • Wood, G., A. Rodriguez-Bachiller, and J. Becker. 2007. Fuzzy sets and simulated environmental change: Evaluating and communicating impact significance in environmental impact assessment. Environment and Planning A 39: 810–829. https://doi.org/10.1068/a3878.

    Article  Google Scholar 

  • Zadeh, L. 1965. Fuzzy logic and its applications. New York: Academic Press.

    Google Scholar 

  • Zadeh, L.A. 1983. The role of fuzzy logic in the management of uncertainty in expert systems. Fuzzy Sets and Systems 11: 199–227.

    Article  Google Scholar 

Download references

Acknowledgements

This is a product of the OceanCanada Partnership, funded by the Social Sciences and Humanities Research Council of Canada, and the Nippon Foundation Nereus Program, a collaborative initiative by the Nippon Foundation and partners including the University of British Columbia.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrés M. Cisneros-Montemayor.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 91 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cisneros-Montemayor, A.M., Singh, G.G. & Cheung, W.W.L. A fuzzy logic expert system for evaluating policy progress towards sustainability goals. Ambio 47, 595–607 (2018). https://doi.org/10.1007/s13280-017-0998-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13280-017-0998-3

Keywords

Navigation