, Volume 47, Issue 3, pp 318–326 | Cite as

Food nitrogen footprint reductions related to a balanced Japanese diet

  • Azusa Oita
  • Ichiro Nagano
  • Hiroyuki Matsuda


Dietary choices largely affect human-induced reactive nitrogen accumulation in the environment and resultant environmental problems. A nitrogen footprint (NF) is an indicator of how an individual’s consumption patterns impact nitrogen pollution. Here, we examined the impact of changes in the Japanese diet from 1961 to 2011 and the effect of alternative diets (the recommended protein diet, a pescetarian diet, a low-NF food diet, and a balanced Japanese diet) on the food NF. The annual per capita Japanese food NF has increased by 55% as a result of dietary changes since 1961. The 1975 Japanese diet, a balanced omnivorous diet that reportedly delays senescence, with a protein content similar to the current level, reduced the current food NF (15.2 kg N) to 12.6 kg N, which is comparable to the level in the recommended protein diet (12.3 kg N). These findings will help consumers make dietary choices to reduce their impacts on nitrogen pollution.


Dietary choice Food consumption Healthy traditional diet Nitrogen footprint Sustainable diet Washoku 



This work was supported in part by the Environment Research and Technology Development Fund (S-14), Ministry of the Environment, Japan.

Supplementary material

13280_2017_944_MOESM1_ESM.pdf (84 kb)
Supplementary material 1 (PDF 84 kb)


  1. Alexandratos, N. 2006. The Mediterranean diet in a world context. Public Health Nutrition 9: 111–117. doi: 10.1079/PHN2005932.CrossRefGoogle Scholar
  2. Allen, P. 2010. Realizing justice in local food systems. Cambridge Journal of Regions, Economy and Society 3: 295–308. doi: 10.1093/cjres/rsq015.CrossRefGoogle Scholar
  3. Billen, G., L. Lassaletta, and J. Garnier. 2015. A vast range of opportunities for feeding the world in 2050: Trade-off between diet, N contamination and international trade. Environmental Research Letters 10: 25001. doi: 10.1088/1748-9326/10/2/025001.CrossRefGoogle Scholar
  4. Burke, M., K. Oleson, E. McCullough, and J. Gaskell. 2009. A global model tracking water, nitrogen, and land inputs and virtual transfers from industrialized meat production and trade. Environmental Modeling and Assessment 14: 179–193. doi: 10.1007/s10666-008-9149-3.CrossRefGoogle Scholar
  5. de Vries, W., J. Kros, C. Kroeze, and S.P. Seitzinger. 2013. Assessing planetary and regional nitrogen boundaries related to food security and adverse environmental impacts. Current Opinion in Environmental Sustainability 5: 392–402. doi: 10.1016/j.cosust.2013.07.004.CrossRefGoogle Scholar
  6. Erisman, J.W., J.N. Galloway, S. Seitzinger, A. Bleeker, N.B. Dise, A.M.R. Petrescu, A.M. Leach, and W. de Vries. 2013. Consequences of human modification of the global nitrogen cycle. Philosophical Transactions of the Royal Society of London. Series B, Biological sciences 368: 20130116. doi: 10.1098/rstb.2013.0116.CrossRefGoogle Scholar
  7. Food and Agriculture Organization of the United Nations (FAO). 2015. FAOSTAT database on food and agriculture. Retrieved 27 October, 2015, from
  8. Fowler, D., M. Coyle, U. Skiba, M.A. Sutton, J.N. Cape, S. Reis, L.J. Sheppard, A. Jenkins, et al. 2013. The global nitrogen cycle in the twenty-first century. Philosophical Transactions of the Royal Society of London. Series B, Biological sciences 368: 20130164. doi: 10.1098/rstb.2013.0164.CrossRefGoogle Scholar
  9. Galloway, J.N., W. Winiwarter, A. Leip, A.M. Leach, A. Bleeker, and J.W. Erisman. 2014. Nitrogen footprints: Past, present and future. Environmental Research Letters 9: 115003. doi: 10.1088/1748-9326/9/11/115003.CrossRefGoogle Scholar
  10. Garcia-Closas, R., A. Berenguer, and C.A. González. 2006. Changes in food supply in Mediterranean countries from 1961 to 2001. Public Health Nutrition 9: 53–60. doi: 10.1079/PHN2005757.CrossRefGoogle Scholar
  11. Garnett, T. 2016. Plating up solutions. Science 353: 1202–1204. doi: 10.1126/science.aah4765.CrossRefGoogle Scholar
  12. Guo, H., K. Niu, H. Monma, Y. Kobayashi, L. Guan, M. Sato, D. Minamishima, and R. Nagatomi. 2012. Association of Japanese dietary pattern with serum adiponectin concentration in Japanese adult men. Nutrition, Metabolism and Cardiovascular Diseases 22: 277–284. doi: 10.1016/j.numecd.2010.06.006.CrossRefGoogle Scholar
  13. Hardy, R.W. 2010. Utilization of plant proteins in fish diets: Effects of global demand and supplies of fishmeal. Aquaculture Research 41: 770–776. doi: 10.1111/j.1365-2109.2009.02349.x.CrossRefGoogle Scholar
  14. Kearney, J. 2010. Food consumption trends and drivers. Philosophical Transactions of the Royal Society B: Biological Sciences 365: 2793–2807. doi: 10.1098/rstb.2010.0149.CrossRefGoogle Scholar
  15. Kido, Y., F. Shizuka, Y. Shimomura, and T. Sugiyama. 2012. Dietary reference intakes for Japanese 2010: Protein. Journal of Nutritional Science and Vitaminology 59: S36–S43. doi: 10.3177/jnsv.59.S36.CrossRefGoogle Scholar
  16. Kobayashi, S., K. Asakura, H. Suga, and S. Sasaki. 2013. High protein intake is associated with low prevalence of frailty among old Japanese women: A multicenter cross-sectional study. Nutrition Journal 12: 164. doi: 10.1186/1475-2891-12-164.CrossRefGoogle Scholar
  17. Kohsaka, R. 2017. The myth of washoku: A twisted discourse on the “uniqueness” of national food heritages. Journal of Ethnic Foods 4. Elsevier Ltd: 66–71. doi: 10.1016/j.jef.2017.05.004.
  18. Lands, W.E., T. Hamazaki, K. Yamazaki, H. Okuyama, K. Sakai, Y. Goto, and V.S. Hubbard. 1990. Changing dietary patterns. The American Journal of Clinical Nutrition 51: 991–993.CrossRefGoogle Scholar
  19. Lassaletta, L., G. Billen, B. Grizzetti, J. Garnier, A.M. Leach, and J.N. Galloway. 2014a. Food and feed trade as a driver in the global nitrogen cycle: 50-year trends. Biogeochemistry 118: 225–241. doi: 10.1007/s10533-013-9923-4.CrossRefGoogle Scholar
  20. Lassaletta, L., G. Billen, E. Romero, J. Garnier, and E. Aguilera. 2014b. How changes in diet and trade patterns have shaped the N cycle at the national scale: Spain (1961–2009). Regional Environmental Change 14: 785–797. doi: 10.1007/s10113-013-0536-1.CrossRefGoogle Scholar
  21. Leach, A.M., J.N. Galloway, A. Bleeker, J.W. Erisman, R. Kohn, and J. Kitzes. 2012. A nitrogen footprint model to help consumers understand their role in nitrogen losses to the environment. Environmental Development 1: 40–66. doi: 10.1016/j.envdev.2011.12.005.CrossRefGoogle Scholar
  22. Levine, M.E., J.A. Suarez, S. Brandhorst, P. Balasubramanian, C.-W. Cheng, F. Madia, L. Fontana, M.G. Mirisola, et al. 2014. Low protein intake is associated with a major reduction in IGF-1, cancer, and overall mortality in the 65 and younger but not older population. Cell Metabolism 19: 407–417. doi: 10.1016/j.cmet.2014.02.006.CrossRefGoogle Scholar
  23. Medina, F.X. 2011. Food consumption and civil society: Mediterranean diet as a sustainable resource for the Mediterranean area. Public Health Nutrition 14: 2346–2349. doi: 10.1017/S1368980011002618.CrossRefGoogle Scholar
  24. Melby, M.K., and W. Takeda. 2014. Lifestyle constraints, not inadequate nutrition education, cause gap between breakfast ideals and realities among Japanese in Tokyo. Appetite 72: 37–49. doi: 10.1016/j.appet.2013.09.013.CrossRefGoogle Scholar
  25. Ministry of Agriculture, Forestry and Fisheries of Japan. 1970. Showa 43 Nendo Shokuryo Jukyu HyoRuibetsu Shuyo Komoku no Ruinenhyo Hitori Ichinichi atari Tanpakushitsu (Food balance sheets for April 1968–March 1969—Annual statistics table for per-capita daily protein supply), 80 (in Japanese). Retrieved 20 March, 2017, from
  26. Ministry of Agriculture, Forestry and Fisheries of Japan. 1977. In Showa 50 Nendo Shokuryo Jukyu HyoRuibetsu Shuyo Komoku no Ruinenhyo Hitori Ichinichi atari Tanpakushitsu (Food balance sheets for April 1975–March 1976—Annual statistics table for per-capita daily protein supply), 46 (in Japanese). Retrieved 20 March, 2017, from
  27. Ministry of Agriculture, Forestry and Fisheries of Japan. 1991. In Heisei Gannendo Shokuryo Jukyu HyoRuibetsu Shuyo Komoku no Ruinenhyo Hitori Ichinichi atari Tanpakushitsu (Food balance sheets for April 1991–March 1992—Annual statistics table for per-capita daily protein supply), 64 (in Japanese). Retrieved 20 March, 2017, from
  28. Ministry of Agriculture, Forestry and Fisheries of Japan. 2015a. Trends in fisheries/fishery policy: white paper on fisheries: summary. Ministry of Agriculture, Forestry and Fisheries of Japan. Retrieved 17 March, 2017, from
  29. Ministry of Agriculture, Forestry and Fisheries of Japan. 2015b. Time series data of soybean production record (in Japanese). Ministry of Agriculture, Forestry and Fisheries of Japan. Retrieved 7 March, 2017, from
  30. Ministry of Health, Labour and Welfare of Japan (JMHLW). 2013. The National Health and Nutrition Survey. Ministry of Health, Labour and Welfare of Japan. Retrieved 7 March, 2017, from
  31. Nesheim, M., P.J. Stover, and M. Oria. 2015. Food systems: Healthy diet sustains the environment too. Nature. doi: 10.1038/522287b.Google Scholar
  32. Nishina, K., A. Ito, N. Hanasaki, and S. Hayashi. 2017. Reconstruction of spatially detailed global map of NH4 + and NO3 application in synthetic nitrogen. Earth System Science Data 9: 149–162. doi: 10.5194/essd-9-149-2017.CrossRefGoogle Scholar
  33. Oda, K., and N. Matsumoto. 2006. Nitrogen cycle model at country level. In Design and Evaluation of Biomass Utilization System, 219–235. Tsukuba: Systematization sub-team of study on biorecycling of wastes from agriculture, forestry and fisheries researching sector (in Japanese).Google Scholar
  34. Oita, A., A. Malik, K. Kanemoto, A. Geschke, S. Nishijima, and M. Lenzen. 2016a. Substantial nitrogen pollution embedded in international trade. Nature Geoscience 9: 111–115. doi: 10.1038/ngeo2635.CrossRefGoogle Scholar
  35. Oita, A., I. Nagano, and H. Matsuda. 2016b. An improved methodology for calculating the nitrogen footprint of seafood. Ecological Indicators 60: 1091–1103. doi: 10.1016/j.ecolind.2015.08.039.CrossRefGoogle Scholar
  36. Sáez-Almendros, S., B. Obrador, A. Bach-Faig, and L. Serra-Majem. 2013. Environmental footprints of Mediterranean versus Western dietary patterns: beyond the health benefits of the Mediterranean diet. Environmental Health 12: 118. doi: 10.1186/1476-069X-12-118.CrossRefGoogle Scholar
  37. Shibata, H., L.R. Cattaneo, A.M. Leach, and J.N. Galloway. 2014. First approach to the Japanese nitrogen footprint model to predict the loss of nitrogen to the environment. Environmental Research Letters 9: 115013. doi: 10.1088/1748-9326/9/11/115013.CrossRefGoogle Scholar
  38. Shibata, H., J.N. Galloway, A.M. Leach, L.R. Cattaneo, L. Cattell Noll, J.W. Erisman, B. Gu, X. Liang, et al. 2017. Nitrogen footprints: Regional realities and options to reduce nitrogen loss to the environment. Ambio 46: 129–142. doi: 10.1007/s13280-016-0815-4.CrossRefGoogle Scholar
  39. Shimazu, T., S. Kuriyama, A. Hozawa, K. Ohmori, Y. Sato, N. Nakaya, Y. Nishino, Y. Tsubono, et al. 2007. Dietary patterns and cardiovascular disease mortality in Japan: A prospective cohort study. International Journal of Epidemiology 36: 600–609. doi: 10.1093/ije/dym005.CrossRefGoogle Scholar
  40. Shindo, J., and A. Yanagawa. 2017. Top-down approach to estimating the nitrogen footprint of food in Japan. Ecological Indicators 78: 502–511. doi: 10.1016/j.ecolind.2017.03.020.CrossRefGoogle Scholar
  41. Shindo, J., K. Okamoto, H. Kawashima, and E. Konohira. 2009. Nitrogen flow associated with food production and consumption and its effect on water quality in Japan from 1961 to 2005. Soil Science and Plant Nutrition 55: 532–545. doi: 10.1111/j.1747-0765.2009.00382.x.CrossRefGoogle Scholar
  42. Steffen, W., K. Richardson, J. Rockström, S. Cornell, I. Fetzer, E. Bennett, R. Biggs, S.R. Carpenter, et al. 2015. Planetary boundaries: Guiding human development on a changing planet. Science 347: 1259855. doi: 10.1126/science.1259855.CrossRefGoogle Scholar
  43. Stevens, C.J., A.M. Leach, S. Dale, and J.N. Galloway. 2014. Personal nitrogen footprint tool for the United Kingdom. Environmental Science: Processes & Impacts 16: 1563–1569. doi: 10.1039/c3em00690e.Google Scholar
  44. Sutton, M.A., C.M. Howard, J.W. Erisman, G. Billen, A. Bleeker, P. Grennfelt, H. van Grinsven, and B. Grizzetti (eds.). 2011. The European nitrogen assessment: Sources, effects and policy perspectives. New York: Cambridge University Press.Google Scholar
  45. Tilman, D., and M. Clark. 2014. Global diets link environmental sustainability and human health. Nature 515: 518–522. doi: 10.1038/nature13959.CrossRefGoogle Scholar
  46. United Nations Environment Program (UNEP) and Woods Hole Research Center (WHRC). 2007. Reactive nitrogen in the environment: Too much or too little of a good thing. Paris: UNEP.Google Scholar
  47. Westhoek, H., J.P. Lesschen, A. Leip, T. Rood, S. Wagner, A. De Marco, D. Murphy-Bokern, C. Pallière, et al. 2015. Nitrogen on the table: The influence of food choices on nitrogen emissions and the European environment. European Nitrogen Assessment Special Report on Nitrogen and Food. Edinburgh: Centre for Ecology & Hydrology.Google Scholar
  48. Yamamoto, K., E. Shuang, Y. Hatakeyama, Y. Sakamoto, T. Honma, Y. Jibu, Y. Kawakami, and T. Tsuduki. 2016. The Japanese diet from 1975 delays senescence and prolongs life span in SAMP8 mice. Nutrition 32: 122–128. doi: 10.1016/j.nut.2015.07.002.CrossRefGoogle Scholar

Copyright information

© Royal Swedish Academy of Sciences 2017

Authors and Affiliations

  1. 1.Graduate School of Environment and Information SciencesYokohama National UniversityYokohamaJapan
  2. 2.Central Research Laboratory, Tokyo Innovation CenterNippon Suisan Kaisha, Ltd.TokyoJapan

Personalised recommendations