Advertisement

Ambio

, Volume 46, Issue 8, pp 842–851 | Cite as

Organic matter export to the seafloor in the Baltic Sea: Drivers of change and future projections

  • Tobias Tamelander
  • Kristian Spilling
  • Monica Winder
Perspective

Abstract

The impact of environmental change and anthropogenic stressors on coastal marine systems will strongly depend on changes in the magnitude and composition of organic matter exported from the water column to the seafloor. Knowledge of vertical export in the Baltic Sea is synthesised to illustrate how organic matter deposition will respond to climate warming, climate-related changes in freshwater runoff, and ocean acidification. Pelagic heterotrophic processes are suggested to become more important in a future warmer climate, with negative feedbacks to organic matter deposition to the seafloor. This is an important step towards improved oxygen conditions in the near-bottom layer that will reduce the release of inorganic nutrients from the sediment and hence counteract further eutrophication. The evaluation of these processes in ecosystem models, validated by field observations, will significantly advance the understanding of the system’s response to environmental change and will improve the use of such models in management of coastal areas.

Keywords

Acidification Baltic Sea Climate warming Eutrophication Organic matter export Pelagic food web 

Notes

Acknowledgements

We are indebted to Lena Seuthe who compiled the POC flux and pelagic biomass data from the Arctic Ocean and to Marit Reigstad who kindly made unpublished data from the project CarbonBridge (Reserach Council of Norway, nr. 226415) available. We thank Alf Norkko and two anonymous reviewers for comments that improved the quality of the mansucript. This study was financially supported by the Swedish Cultural Foundation in Finland and the Walter and Andrée de Nottbeck Foundation.

Supplementary material

13280_2017_930_MOESM1_ESM.pdf (63 kb)
Supplementary material 1 (PDF 63 kb)

References

  1. Aberle, N., B. Bauer, A. Lewandowska, U. Gaedke, and U. Sommer. 2012. Warming induces shifts in microzooplankton phenology and reduces time-lags between phytoplankton and protozoan production. Marine Ecology Progress Series 159: 2441–2453.Google Scholar
  2. Alheit, J., C. Möllmann, J. Dutz, G. Karnilovs, P. Loewe, V. Mohrholz, and N. Wasmund. 2005. Synchronous ecological regime shifts in the central Baltic and the North Sea in the late 1980s. ICES Journal of Marine Science 62: 1205–1215.CrossRefGoogle Scholar
  3. Almén, A.K., A. Vehmaa, A. Brutemark, L. Bach, S. Lischka, A. Stuhr, S. Furuhagen, A. Paul, et al. 2016. Negligible effects of ocean acidification on Eurytemora affinis (Copepoda) offspring production. Biogeosciences 13: 1037–1048.CrossRefGoogle Scholar
  4. Almroth-Rosell, E., K. Eilola, R. Hordoir, H.E.M. Meier, and P.O.J. Hall. 2011. Transport of fresh and resuspended particulate organic material in the Baltic Sea—a model study. Journal of Marine Systems 87: 1–12.CrossRefGoogle Scholar
  5. Ardyna, M., M. Babin, M. Gosselin, E. Devred, L. Rainville, and J.-E. Tremblay. 2014. Recent Arctic Ocean sea ice loss triggers novel fall phytoplankton blooms. Geophysical Research Letters 41: 6207–6212.CrossRefGoogle Scholar
  6. Asmala, E., R. Autio, H. Kaartokallio, L. Pitkänen, C.A. Stedmon, and D.N. Thomas. 2013. Bioavailability of riverine dissolved organic matter in three Baltic Sea estuaries and the effect of catchment land use. Biogeosciences 10: 6969–6986.CrossRefGoogle Scholar
  7. Asmala, E., D.G. Bowers, R. Autio, H. Kaartokallio, and D.N. Thomas. 2014. Qualitative changes of riverine dissolved organic matter at low salinities due to flocculation. Journal of Geophysical Research-Biogeosciences 119: 1919–1933.CrossRefGoogle Scholar
  8. Belkin, I.M. 2009. Rapid warming of Large Marine Ecosystems. Progress in Oceanography 81: 207–213.CrossRefGoogle Scholar
  9. Blanchard, J.L., R. Law, M.D. Castle, and S. Jennings. 2011. Coupled energy pathways and the resilience of size-structured food webs. Theoretical Ecology 4: 289–300.CrossRefGoogle Scholar
  10. Blomqvist, S., and A.S. Heiskanen. 2001. The challenge of sedimentation in the Baltic Sea. In A systems analysis of the Baltic Sea. Ecological Studies, ed. F.D. Wulff, L.A. Rahm, and P. Larsson, Vol. 148, 211–227. Berlin: Springer.Google Scholar
  11. Blomqvist, S., and U. Larsson. 1994. Detrital bedrock elements as tracers of settling resuspended particulate matter in a coastal area of the Baltic Sea. Limnology and Oceanography 39: 880–896.CrossRefGoogle Scholar
  12. Bonsdorff, E., E.M. Blomqvist, J. Mattila, and A. Norkko. 1997. Coastal eutrophication: Causes, consequences and perspectives in the Archipelago areas of the northern Baltic Sea. Estuarine, Coastal and Shelf Science 44: 63–72.CrossRefGoogle Scholar
  13. Carstensen, J., D.J. Conley, E. Bonsdorff, B.G. Gustafsson, S. Hietanen, U. Janas, T. Jilbert, A. Maximov, et al. 2014. Hypoxia in the Baltic Sea: Biogeochemical cycles, benthic fauna, and management. Ambio 43: 26–36.CrossRefGoogle Scholar
  14. Christensen, O.B., E. Kjellström, and E. Zorita. 2015. Projected change—atmosphere. In Second assessment of climate change for the Baltic Sea Basin, ed. The BACC II Author Team, 217–233. Springer.Google Scholar
  15. Cloern, J.E., P.C. Abreu, J. Carstensen, L. Chauvaud, R. Elmgren, J. Grall, H. Greening, J.O.R. Johansson, et al. 2016. Human activities and climate variability drive fast-paced change across the world’s estuarine-coastal ecosystems. Global Change Biology 22: 513–529.CrossRefGoogle Scholar
  16. Diaz, R.J., and R. Rosenberg. 2008. Spreading dead zones and consequences for marine ecosystems. Science 321: 926–929.CrossRefGoogle Scholar
  17. Eggers, S.L., A.M. Lewandowska, J. Barcelos e Ramos, S. Blanco-Ameijeiras, F. Gallo, and B. Matthiessen. 2014. Community composition has greater impact on the functioning of marine phytoplankton communities than ocean acidification. Global Change Biology 20: 713–723.CrossRefGoogle Scholar
  18. Eilola, K., S. Martensson, and H.E.M. Meier. 2013. Modeling the impact of reduced sea ice cover in future climate on the Baltic Sea biogeochemistry. Geophysical Research Letters 40: 149–154.CrossRefGoogle Scholar
  19. Elmgren, R. 1984. Trophic dynamics in the enclosed, brackish Baltic Sea. Rapports et Procès-verbaux des Réunions Conseil International Pour L’Exploration de la Mer 183: 153–179.Google Scholar
  20. Engström, J., M. Koski, M. Viitasalo, M. Reinikainen, S. Repka, and K. Sivonen. 2000. Feeding interactions of the copepods Eurytemora affinis and Acartia bifilosa with the cyanobacteria Nodularia sp. Journal of Plankton Research 22: 1403–1409.CrossRefGoogle Scholar
  21. Feike, M., R. Heerkloss, T. Rieling, and H. Schubert. 2007. Studies on the zooplankton community of a shallow lagoon of the Southern Baltic Sea: long-term trends, seasonal changes, and relations with physical and chemical parameters. Hydrobiologia 577: 95–106.CrossRefGoogle Scholar
  22. Fleming-Lehtinen, V., M. Laamanen, H. Kuosa, H. Haahti, and R. Olsonen. 2008. Long-term development of inorganic nutrients and chlorophyll alpha in the open northern Baltic Sea. Ambio 37: 86–92.CrossRefGoogle Scholar
  23. Forest, A., S. Belanger, M. Sampei, H. Sasaki, C. Lalande, and L. Fortier. 2010. Three-year assessment of particulate organic carbon fluxes in Amundsen Gulf (Beaufort Sea): Satellite observations and sediment trap measurements. Deep-Sea Research Part I 57: 125–142.CrossRefGoogle Scholar
  24. Forest, A., J.E. Tremblay, Y. Gratton, J. Martin, J. Gagnon, G. Darnis, M. Sampei, L. Fortier, et al. 2011. Biogenic carbon flows through the planktonic food web of the Amundsen Gulf (Arctic Ocean): A synthesis of field measurements and inverse modeling analyses. Progress in Oceanography 91: 410–436.CrossRefGoogle Scholar
  25. Goñi, M.A., M.B. Yunker, R.W. Macdonald, and T.I. Eglinton. 2000. Distribution and sources of organic biomarkers in arctic sediments from the Mackenzie River and Beaufort Shelf. Marine Chemistry 71: 23–51.CrossRefGoogle Scholar
  26. Grebmeier, J.M., J.E. Overland, S.E. Moore, E.V. Farley, E.C. Carmack, L.W. Cooper, K.E. Frey, and J.H. Helle. 2006. A major ecosystem shift in the northern Bering Sea. Science 311: 1461–1464.CrossRefGoogle Scholar
  27. Griffiths, J.R., M. Kadin, F.J.A. Nascimento, T. Tamelander, A. Törnroos, S. Bonaglia, E. Bonsdorff, V. Brüchert, et al. 2017. The importance of benthic–pelagic coupling for marine ecosystem functioning in a changing world. Global Change Biology 23: 2179–2196.CrossRefGoogle Scholar
  28. Groetsch, P.M.M., S.G.H. Simis, M.A. Eleveld, and S.W.M. Peters. 2016. Spring blooms in the Baltic Sea have weakened but lengthened from 2000 to 2014. Biogeosciences 13: 4959–4973.CrossRefGoogle Scholar
  29. Gustafsson, O., J. Gelting, P. Andersson, U. Larsson, and P. Roos. 2013. An assessment of upper ocean carbon and nitrogen export fluxes on the boreal continental shelf: A 3-year study in the open Baltic Sea comparing sediment traps, Th-234 proxy, nutrient, and oxygen budgets. Limnology and Oceanography-Methods 11: 495–510.CrossRefGoogle Scholar
  30. Hansen, A.S., T.G. Nielsen, H. Levinsen, S.D. Madsen, T.F. Thingstad, and B.W. Hansen. 2003. Impact of changing ice cover on pelagic productivity and food web structure in Disko Bay, West Greenland: A dynamic model approach. Deep-Sea Research Part I 50: 171–187.CrossRefGoogle Scholar
  31. Havenhand, J.N. 2012. How will ocean acidification affect Baltic Sea ecosystems? An assessment of plausible impacts on key functional groups. Ambio 41: 637–644.CrossRefGoogle Scholar
  32. Heiskanen, A.S., and K. Kononen. 1994. Sedimentation of vernal and late summer phytoplankton communities in the coastal Baltic Sea. Archiv fur Hydrobiologie 131: 175–198.Google Scholar
  33. Heiskanen, A.S., and M. Leppänen. 1995. Estimation of export production in the coastal Baltic Sea: Effect of resuspension and microbial decomposition on sedimentation measurements. Hydrobiologia 316: 211–224.CrossRefGoogle Scholar
  34. Heiskanen, A.S., and P. Tallberg. 1999. Sedimentation and particulate nutrient dynamics along a coastal gradient from a fjord-like bay to the open sea. Hydrobiologia 393: 127–140.CrossRefGoogle Scholar
  35. Hoikkala, L., T. Lahtinen, M. Perttilä, and R. Lignell. 2012. Seasonal dynamics of dissolved organic matter on a coastal salinity gradient in the northern Baltic Sea. Continental Shelf Research 45: 1–14.CrossRefGoogle Scholar
  36. Josefson, A.B., J. Norkko, and A. Norkko. 2012. Burial and decomposition of plant pigments in surface sediments of the Baltic Sea: Role of oxygen and benthic fauna. Marine Ecology Progress Series 455: 33–49.CrossRefGoogle Scholar
  37. Kaartokallio, H., E. Asmala, R. Autio, and D.N. Thomas. 2016. Bacterial production, abundance and cell properties in boreal estuaries: Relation to dissolved organic matter quantity and quality. Aquatic Sciences 78: 525–540.CrossRefGoogle Scholar
  38. Kahru, M., R. Elmgren, and O.P. Savchuk. 2016. Changing seasonality of the Baltic Sea. Biogeosciences 13: 1009–1018.CrossRefGoogle Scholar
  39. Kopp, D., S. Lefebvre, M. Cachera, M.C. Villanueva, and B. Ernande. 2015. Reorganization of a marine trophic network along an inshore-offshore gradient due to stronger pelagic-benthic coupling in coastal areas. Progress in Oceanography 130: 157–171.CrossRefGoogle Scholar
  40. Koski, M., M. Viitasalo, and H. Kuosa. 1999. Seasonal development of mesozooplankton biomass and production on the SW coast of Finland. Ophelia 50: 69–91.CrossRefGoogle Scholar
  41. Koski, M., K. Schmidt, J. Engström-Öst, M. Viitasalo, S. Jonasdottir, S. Repka, and K. Sivonen. 2002. Calanoid copepods feed and produce eggs in the presence of toxic cyanobacteria Nodularia spumigena. Limnology and Oceanography 47: 878–885.CrossRefGoogle Scholar
  42. Leandro, S.M., H. Queiroga, L. Rodrígues-Graña, P. Tiselius. 2006. Temperature-dependent development and somatic growth in two allopatric populations of Acartia clausi (Copepoda: Calanoida). Marine Ecology Progress Series 322: 189–197.CrossRefGoogle Scholar
  43. Lehtonen, K.K., and A.B. Andersin. 1998. Population dynamics, response to sedimentation and role in benthic metabolism of the amphipod Monoporeia affinis in an open-sea area of the northern Baltic Sea. Marine Ecology Progress Series 168: 71–85.CrossRefGoogle Scholar
  44. Lehtoranta, J., P. Ekholm, and H. Pitkänen. 2008. Eutrophication-driven sediment microbial processes can explain the regional variation in phosphorus concentrations between Baltic Sea sub-basins. Journal of Marine Systems 74: 495–504.CrossRefGoogle Scholar
  45. Lehtoranta, J., P. Ekholm, and H. Pitkänen. 2009. Coastal eutrophication thresholds: A matter of sediment microbial processes. Ambio 38: 303–308.CrossRefGoogle Scholar
  46. Leipe, T., F. Tauber, H. Vallius, J. Virtasalo, S. Uscinowicz, N. Kowalski, S. Hille, S. Lindgren, and T. Myllyvirta. 2011. Particulate organic carbon (POC) in surface sediments of the Baltic Sea. Geo-Marine Letters 31: 175–188.CrossRefGoogle Scholar
  47. Lignell, R., A.S. Heiskanen, H. Kuosa, K. Gundersen, P. Kuupopo-Leinikke, R. Pajuniemi, and A. Uitto. 1993. Fate of a phytoplankton spring bloom—sedimentation and carbon flow in the planktonic food web in the northern Baltic. Marine Ecology Progress Series 94: 239–252.CrossRefGoogle Scholar
  48. Meier, H.E.M. 2015. Projected change—marine physics. In Second assessment of climate change for the Baltic Sea Basin, ed. The BACC II Author Team, 960–996. Springer.Google Scholar
  49. Meier, H.E.M., K. Eilola, and E. Almroth. 2011. Climate-related changes in marine ecosystems simulated with a 3-dimensional coupled physical-biogeochemical model of the Baltic Sea. Climate Research 48: 31–55.CrossRefGoogle Scholar
  50. Meier, H.E.M., R. Hordoir, H.C. Handersson, C. Dietrich, K. Eilola, B.G. Gustafsson, A. Höglund, and S. Schimanke. 2012. Modeling the combined impact of changing climate and changing nutrient loads on the Baltic Sea environment in an ensemble of transient simulations for 1961–2099. Climate Dynamics 39: 2421–2441.CrossRefGoogle Scholar
  51. Merkouriadi, I., and M. Leppäranta. 2014. Long-term analysis of hydrography and sea-ice data in Tvarminne, Gulf of Finland, Baltic Sea. Climatic Change 124: 849–859.CrossRefGoogle Scholar
  52. Möllmann, C., G. Kornilovs, and L. Sidrevics. 2000. Long-term dynamics of main mesozooplankton species in the central Baltic Sea. Journal of Plankton Research 22: 2015–2038.CrossRefGoogle Scholar
  53. Nixon, S.W., R.W. Fulweiler, B.A. Buckley, S.L. Granger, B.L. Nowicki, and K.M. Henry. 2009. The impact of changing climate on phenology, productivity, and benthic-pelagic coupling in Narragansett Bay. Estuarine, Coastal and Shelf Science 82: 1–18.CrossRefGoogle Scholar
  54. Passow, U., and C.A. Carlson. 2012. The biological pump in a high CO2 world. Marine Ecology Progress Series 470: 249–271.CrossRefGoogle Scholar
  55. Paul, C., B. Matthiessen, and U. Sommer. 2015. Warming, but not enhanced CO2 concentration, quantitatively and qualitatively affects phytoplankton biomass. Marine Ecology Progress Series 528: 39–51.CrossRefGoogle Scholar
  56. Petersen, G.H., and M.A. Curtis. 1980. Differences in energy flow through major components of subarctic, temperate and tropical marine shelf ecosystems. Dana 1: 53–64.Google Scholar
  57. Richardson, A.J. 2008. In hot water: zooplankton and climate change. ICES Journal of Marine Science 65: 279–295.CrossRefGoogle Scholar
  58. Riebesell, U., K.G. Schultz, R.G.J. Bellerby, M. Botros, P. Fritsche, M. Meyerhöfer, C. Neill, G. Nondal, et al. 2007. Enhanced biological carbon consumption in a high CO2 ocean. Nature 450: 545–548.CrossRefGoogle Scholar
  59. Riebesell, U., P.D. Tortell. 2011. Effects of ocean acidification on pelagic organisms and ecosystems. In Ocean acidification, eds. Gattuso J-P., L. Hansson, p 99–121. Oxford: Oxford Universty Press.Google Scholar
  60. Renaud P., T.S. Løkken, L.L. Jørgensen, J. Berge, B.J. Johnson. 2015. Macroalgaldetritus and food-web subsidies along an Arctic fjord depth-gradient. Frontiers in Marine Science 2: article nr 31.Google Scholar
  61. Rosoll, D., U. Sommer, and M. Winder. 2013. Community interactions dampen acidification effects in a coastal plankton system. Marine Ecology Progress Series 486: 37–46.CrossRefGoogle Scholar
  62. Sholkovitz, E.R., E.A. Boyle, and N.B. Price. 1978. Removal of dissolved humic acids and iron during estuarine mixing. Earth and Planetary Science Letters 40: 130–136.CrossRefGoogle Scholar
  63. Simis, S., P. Ylöstalo, K. Kallio, K. Spilling, and T. Kutser. 2017. Optical-biogeochemical models of the Baltic Sea in spring and summer. PLoS ONE 12: e0173357.CrossRefGoogle Scholar
  64. Smetacek, V., B. von Bodungen, R. Knoppers, R. Peinert, F. Pollehne, P. Stegmann, and B. Zeitzschel. 1984. Seasonal stages characterizing the annual cycle of an inshore pelagic system. Rapports et Procès-verbaux des Réunions Conseil International Pour L’Exploration de la Mer 183: 126–135.Google Scholar
  65. Sommer, U., N. Aberle, K. Lengfellner, and A. Lewandowska. 2012. The Baltic Sea spring phytoplankton bloom in a changing climate: An experimental approach. Marine Biology 159: 2479–2490.CrossRefGoogle Scholar
  66. Sonnenborg, T.O. 2015. Projected Change - Hydrology. In Second assessment of climate change for the Baltic Sea Basin, ed. The BACC II Author Team, 933–959. Springer.Google Scholar
  67. Spilling, K., K.G. Scchultz, A.J. Paul, T. Boxhammer, E.P. Achterberg, T. Hrnick, S. Lischka, A. Stuhr, et al. 2016. Effects of ocean acidification on pelagic carbon fluxes in a mesocosm experiment. Biogeosciences 13: 6081–6093.CrossRefGoogle Scholar
  68. Suikkanen, S., M. Laamanen, and M. Huttunen. 2007. Long-term changes in summer phytoplankton communities of the open northern Baltic Sea. Estuarine, Coastal and Shelf Science 71: 580–592.CrossRefGoogle Scholar
  69. Suikkanen, S., S. Pulina, J. Engström-Öst, M. Lehtiniemi, S. Lehtinen, and A. Brutemark. 2013. Climate change and eutrophication induced shifts in northern summer plankton communities. PLoS ONE 8: e66475.CrossRefGoogle Scholar
  70. Tallberg, P., and A.S. Heiskanen. 1998. Species-specific phytoplankton sedimentation in relation to primary production along an inshore-offshore gradient in the Baltic Sea. Journal of Plankton Research 20: 2053–2070.CrossRefGoogle Scholar
  71. Tamelander, T., and A.S. Heiskanen. 2004. Effects of spring bloom phytoplankton dynamics and hydrography on the composition of settling material in the coastal northern Baltic Sea. Journal of Marine Systems 52: 217–234.CrossRefGoogle Scholar
  72. Tamelander, T., P.E. Renaud, H. Hop, M.L. Carroll, W.G. Ambrose, and K.A. Hobson. 2006. Trophic relationships and pelagic-benthic coupling during summer in the Barents Sea Marginal Ice Zone, revealed by stable carbon and nitrogen isotope measurements. Marine Ecology Progress Series 310: 33–46.CrossRefGoogle Scholar
  73. Thingstad, T.F., M.D. Krom, R.F.C. Mantoura, G.A.F. Flaten, S. Groom, B. Herut, N. Kress, C.S. Law, et al. 2005. Nature of phosphorus limitation in the ultraoligotrophic eastern Mediterranean. Science 309: 1068–1071.CrossRefGoogle Scholar
  74. Timmermann, K., J. Norkko, U. Janas, A. Norkko, B.G. Gustafsson, and E. Bonsdorff. 2012. Modelling macrofaunal biomass in relation to hypoxia and nutrient loading. Journal of Marine Systems 105: 60–69.CrossRefGoogle Scholar
  75. Turner, J.T. 2015. Zooplankton fecal pellets, marine snow, phytodetritus and the ocean’s biological pump. Progress in Oceanography 130: 205–248.CrossRefGoogle Scholar
  76. Vahtera, E., D.J. Conley, B.G. Gustafssonm, H. Kuosa, H. Pitkänen, O.P. Savchuk, T. Tamminen, M. Viitasalo, et al. 2007. Internal ecosystem feedbacks enhance nitrogen-fixing cyanobacteria blooms and complicate management in the Baltic Sea. Ambio 36: 186–194.CrossRefGoogle Scholar
  77. Vehmaa, A., A.K. Almén, A. Brutemark, A. Paul, U. Riebesell, S. Furuhagen, and J. Engström-Öst. 2016. Ocean acidification challenges copepod phenotypic plasticity. Biogeosciences 13: 6171–6182.CrossRefGoogle Scholar
  78. Viitasalo, M., I. Vuorinen, and S. Saesmaa. 1995. Mesozooplankton dynamics in the northern Baltic Sea—implications of variations in hydrography and climate. Journal of Plankton Research 17: 1857–1878.CrossRefGoogle Scholar
  79. Wassmann, P. 1998. Retention versus export food chains: processes controlling sinking loss from marine pelagic systems. Hydrobiologia 363: 29–57.CrossRefGoogle Scholar
  80. Wiklund, A.K.E., and A. Andersson. 2014. Benthic competition and population dynamics of Monoporeia affinis and Marenzelleria sp. in the northern Baltic Sea. Estuarine, Coastal and Shelf Science 144: 46–53.CrossRefGoogle Scholar
  81. Wikner, J., and A. Andersson. 2012. Increased freshwater discharge shifts the trophic balance in the coastal zone of the northern Baltic Sea. Global Change Biology 18: 2509–2519.CrossRefGoogle Scholar
  82. Winder, M., and U. Sommer. 2012. Phytoplankton response to a changing climate. Hydrobiologia 698: 5–16.CrossRefGoogle Scholar

Copyright information

© Royal Swedish Academy of Sciences 2017

Authors and Affiliations

  • Tobias Tamelander
    • 1
  • Kristian Spilling
    • 2
  • Monica Winder
    • 3
  1. 1.Tvärminne Zoological StationUniversity of HelsinkiHankoFinland
  2. 2.Marine Research CentreFinnish Environment InstituteHelsinkiFinland
  3. 3.Department of Ecology, Environment and Plant SciencesStockholm UniversityStockholmSweden

Personalised recommendations