, Volume 46, Issue 6, pp 667–679 | Cite as

Seagrass metabolism and carbon dynamics in a tropical coastal embayment

  • Dipnarayan Ganguly
  • Gurmeet Singh
  • Purvaja Ramachandran
  • Arumughan Paneer Selvam
  • Kakolee Banerjee
  • Ramesh Ramachandran


Net ecosystem metabolism and subsequent changes in environmental variables were studied seasonally in the seagrass-dominated Palk Bay, located along the southeast coast of India. The results showed that although the water column was typically net heterotrophic, the ecosystem as a whole displayed autotrophic characteristics. The mean net community production from the seagrass meadows was 99.31 ± 45.13 mM C m−2 d−1, while the P/R ratio varied between 1.49 and 1.56. Oxygen produced through in situ photosynthesis, exhibited higher dependence over dissolved CO2 and available light. Apportionment of carbon stores in biomass indicated that nearly three-fourths were available belowground compared to aboveground. However, the sediment horizon accumulated nearly 40 times more carbon than live biomass. The carbon storage capacities of the sediments and seagrass biomass were comparable with the global mean for seagrass meadows. The results of this study highlight the major role of seagrass meadows in modification of seawater chemistry. Though the seagrass meadows of Palk Bay are increasingly subject to human impacts, with coupled regulatory and management efforts focused on improved water quality and habitat conservation, these key coastal ecosystems will continue to be valuable for climate change mitigation, considering their vital role in C dynamics and interactions with the overlying water column.


Aragonite saturation Carbon uptake NCP Palk Bay Seagrass meadows 



The authors acknowledge the financial and technical support of the Ministry of Environment, Forest and Climate Change, Government of India, and the World Bank under the India ICZM Project. We thank Dr. Robert R. Lane of Louisiana State University, USA, for his critical review of this manuscript.

Supplementary material

13280_2017_916_MOESM1_ESM.pdf (475 kb)
Supplementary material 1 (PDF 408 kb)


  1. Balasubramanian, T., and M.V.M. Wafar. 1975. Primary productivity of some seagrass beds in the Gulf of Mannar. Mahasagar 8: 87–91.Google Scholar
  2. Barton, A., B. Hales, G.G. Waldbusser, C. Langdon, and R.A. Feely. 2012. The Pacific oyster, Crassostrea gigas, shows negative correlation to naturally elevated carbon dioxide levels: Implications for near-term ocean acidification effects. Limnology and Oceanography 57: 698–710.CrossRefGoogle Scholar
  3. Benson, B.B., and D. Krause. 1984. The concentration and isotopic fractionation of oxygen dissolved in freshwater and seawater in equilibrium with the atmosphere. Limnology and Oceanography 29: 620–632.CrossRefGoogle Scholar
  4. Cabaco, S., E.T. Apostolaki, P. García-Marín, R. Gruber, I. Hernández, B. Martínez-Crego, O. Mascaró, M. Pérez, et al. 2013. Effects of nutrient enrichment on seagrass population dynamics: Evidence and synthesis from the biomass–density relationships. Journal of Ecology 101: 1552–1562.CrossRefGoogle Scholar
  5. Chou, W.C., G.C. Gong, C.C. Hung, and Y.H. Wu. 2013. Carbonate mineral saturation states in the East China Sea: Present conditions and future scenarios. Biogeosciences 10: 6453–6467.CrossRefGoogle Scholar
  6. Champenois, W., and A.V. Borges. 2012. Seasonal and interannual variations of community metabolism rates of a Posidonia oceanica seagrass meadow. Limnology and Oceanography 57: 347–361.CrossRefGoogle Scholar
  7. Coll, M., A. Schmidt, T. Romanuk, and H.K. Lotze. 2011. Food-web structure of seagrass communities across different spatial scales and human impacts. PLoS ONE 6: e22591. doi: 10.1371/journal.pone.0022591.CrossRefGoogle Scholar
  8. Duarte, C.M. 1990. Seagrass nutrient content. Marine Ecology Progress Series 67: 201–207.CrossRefGoogle Scholar
  9. Duarte, C.M., M. Núria, G. Esperança, W.F. James, B. Jeff, B. Cristina, and T.A. Eugenia. 2010. Seagrass community metabolism: Assessing the carbon sink capacity of seagrass meadows. Global Biogeochemical Cycles 24: 1–8.CrossRefGoogle Scholar
  10. Duarte, C.M., and D.K. Jensen. 2017. Export from seagrass meadows contributes to marine carbon sequestration. Frontiers in Marine Science. doi: 10.3389/fmars.2017.00013.Google Scholar
  11. Dufault, A.M., V.R. Cumbo, F. Tung-Yung, and P.J. Edmunds. 2012. Effects of diurnally oscillating pCO2 on the calcification and survival of coral recruits. Proceedings of the Royal Society Biological Sciences 279: 2951–2958.CrossRefGoogle Scholar
  12. Fourqurean, J.W., C.M. Duarte, H. Kennedy, N. Marbà, M. Holmer, M.A. Mateo, E.T. Apostolaki, G.A. Kendrick, et al. 2012. Seagrass ecosystems as a globally significant carbon stock. Nature Geoscience 5: 505–509.CrossRefGoogle Scholar
  13. Ganguly, D., M. Dey, S. Sen, and T.K. Jana. 2009. Biosphere-atmosphere exchange of NOx in the tropical mangrove forest. Journal Geophysical Research. doi: 10.1029/2008JG000852.Google Scholar
  14. Geevarghese, G.A., A. Babu, G. Magesh, S. Raja, P. Krishnan, R. Purvaja and R. Ramesh. 2016. A comprehensive geospatial assessment of seagrass status in India Abstract No. 1.2, National conference on “Management and conservation of seagrass in India,” organized by Ministry of Environment, Forest and Climate Change, Govt of India, GIZ-GmbH, and IUCN. 12–13 July 2016, New Delhi.Google Scholar
  15. Greiner, J.T., K.J. McGlathery, J. Gunnell, and B.A. McKee. 2013. Seagrass restoration enhances “Blue Carbon” sequestration in coastal waters. PLoS ONE 8: e72469. doi: 10.1371/journal.pone.0072469.CrossRefGoogle Scholar
  16. Gladstone, W. 2009. Conservation and management of tropical coastal ecosystems. In Ecological Connectivity among Tropical Coastal Ecosystems, ed. I. Nagelkerken, 565–605. Dordrecht: Springer.CrossRefGoogle Scholar
  17. Govindasamy, C., and M. Arulpriya. 2011. Seasonal variation in seagrass biomass in Northern Palk Bay, India. Biodiversity 12: 223–231.CrossRefGoogle Scholar
  18. Gowthaman, R., V. Sanil Kumar, G.S. Dwarakish, S.S. Mohan, J. Singh, and K. Ashok Kumar. 2013. Waves in Gulf of Mannar and Palk Bay around Dhanushkodi, Tamil Nadu, India. Current Science 104: 1431–1435.Google Scholar
  19. Grasshoff, K., K. Kremlimg, and M. Ehrhardt. 1999. Analysis by electrochemical methods. In Methods of Sea Water Analysis, ed. K. Grasshoff, M. Ehrhardt, and K. Kremling, 159–226. Weinheim: Wiley.CrossRefGoogle Scholar
  20. Guinottea, J.M., and V.J. Fabry. 2008. Ocean acidification and its potential effects on marine ecosystems. Annals of the New York Academy of Sciences 1134: 320–342.CrossRefGoogle Scholar
  21. Hendriks, I., Y. Olsen, R.L. Basso, A. Stechbauer, T.S. Moore, J. Howard, and C.M. Duarte. 2014. Photosynthetic activity buffers ocean acidification in seagrass meadows. Biogeosciences 11: 333–346.CrossRefGoogle Scholar
  22. Howard, J., S. Hoyt, K. Isensee, M. Telszewski, and E. Pidgeon, editors. 2014. Coastal Blue Carbon: Methods for assessing carbon stocks and emissions factors in mangroves, tidal salt marshes, and seagrasses. Arlington, Virginia: Conservation International, Intergovernmental Oceanographic Commission of UNESCO, International Union for Conservation of Nature.Google Scholar
  23. Jokiel, P.L. 2013. Coral reef calcification: Carbonate, bicarbonate and proton flux under conditions of increasing ocean acidification. Proceedings of Royal Society B 280: 20130031.CrossRefGoogle Scholar
  24. Jordan, T.E., J.C. Cornwell, W.R. Boynton, and J.T. Anderson. 2008. Changes in phosphorus biogeochemistry along an estuarine salinity gradient: The iron conveyer belt. Limnology and Oceanography 53: 172–184.CrossRefGoogle Scholar
  25. Kaladharan, P., and I.D. Raj. 1989. Primary production of seagrass Cymodocea serrulata and its contribution to the productivity of Amini Atoll, Lakshadweep Islands. Indian Journal of Marine Sciences 18: 215–216.Google Scholar
  26. Kennedy, H., J. Beggins, C.M. Duarte, J.W. Fourqurean, M. Holmer, N. Marbà, and J.J. Middelburg. 2010. Seagrass sediments as a global carbon sink: Isotopic constraints. Global Biogeochemical Cycles. doi: 10.1029/2010GB003848.Google Scholar
  27. Kumaraguru, A.K., K. Jayakumar, and C.M. Ramakritinan. 2003. Coral bleaching 2002 in the Palk Bay. Southeast coast of India. Current Science 85: 1787–1793.Google Scholar
  28. Lamb, J.B., J.A.J.M. van de Water, D.G. Bourne, C. Altier, M.Y. Hein, E.A. Fiorenza, N. Abu, J. Jompa, et al. 2017. Seagrass ecosystems reduce exposure to bacterial pathogens of humans, fishes, and invertebrates. Science 355: 731–733.CrossRefGoogle Scholar
  29. Larkum, A.W.D., R.J. Orth, and C.M. Duarte. 2006. Seagrasses: Biology, Ecology and Conservation, 136. Dordrecht: Springer.Google Scholar
  30. Lavery, P.S., M.-Á. Mateo, O. Serrano, and M. Rozaimi. 2013. Variability in the carbon storage of seagrass habitats and its implications for global estimates of blue carbon ecosystem service. PLoS ONE 8: e73748.CrossRefGoogle Scholar
  31. Lee, K.S., S.R. Park, and Y.K. Kim. 2007. Effects of irradiance, temperature, and nutrients on growth dynamics of seagrasses: A review. Journal of Experimental Marine Biology and Ecology 350: 144–175.CrossRefGoogle Scholar
  32. Lewis, E. and D.W.R. Wallace. 1998. CO2SYS—Program developed for the CO2 system calculations Report ORNL/CDIAC-105 (Oak Ridge, TN: Carbon Dioxide Information Analysis Center, ORNL).Google Scholar
  33. Macreadie, P.I., M.E. Baird, S.M. Trevathan-Tackett, A.W. Larkum, and P.J. Ralph. 2014. Quantifying and modelling the carbon sequestration capacity of seagrass meadows: A critical assessment. Marine Pollution Bulletin 83: 430–439.CrossRefGoogle Scholar
  34. Manikandan, B., J. Ravindran, S. Shrinivaasu, N. Marimuthu, and K. Paramasivam. 2014. Environmental Monitoring and Assessment 186: 5989–6002.CrossRefGoogle Scholar
  35. Manikandan, S., S. Ganesapandian, and K. Parthiban. 2011. Distribution and zonation of seagrasses in the Palk Bay. Southeastern India. Journal of Fisheries and Aquatic Science 6: 178–185.CrossRefGoogle Scholar
  36. Marsh, G. 2005. Seawater pH and anthropogenic carbon dioxide, 15. Chicago: Argonne National Laboratory. University of Chicago.Google Scholar
  37. Millero, F.J., T.B. Graham, F. Huang, H. Bustos-Serrano, and D. Perrot. 2006. Dissociation constants of carbonic acid in seawater as a function of salinity and temperature. Marine Chemistry 100: 80–94.CrossRefGoogle Scholar
  38. Odum, H.T. 1956. Primary production in flowing waters. Limnology and Oceanography 1: 102–117.CrossRefGoogle Scholar
  39. Olivé, I., J. Silva, M.M. Costa, and R. Santos. 2016. Estuaries and Coasts 39: 138. doi: 10.1007/s12237-015-9973-z.CrossRefGoogle Scholar
  40. Onuf, C.P. 1996. Biomass patterns in seagrass meadows of the Laguna Madre, Texas. Bulletin of Marine Science 58: 404–420.Google Scholar
  41. Ow, Y.X., N. Vogel, C.J. Collier, J.A.M. Holtum, F. Flores, and S. Uthicke. 2016. Nitrate fertilisation does not enhance CO2 responses in two tropical seagrass species. Scientific Reports 6: 23093.CrossRefGoogle Scholar
  42. Plus, M., I. Auby, D. Maurer, G. Trut, Y. Del Amo, F. Dumas, and B. Thouvenin. 2015. Phytoplankton versus macrophyte contribution to primary production and biogeochemical cycles of a coastal mesotidal system. A modelling approach. Estuarine, Coastal and Shelf Science 165: 52–60.CrossRefGoogle Scholar
  43. Qasim, S.Z., and P.M.A. Bhattathiri. 1971. Primary productivity of a seagrass bed on Kavaratti atoll (Laccadives). Hydrobiologia 38: 29–38.CrossRefGoogle Scholar
  44. Russell, B.D., S.D. Connell, S. Uthicke, N. Muehllehner, K.E. Fabricius, and J.M. Hall-Spencer. 2013. Future seagrass beds: Can increased productivity lead to increased carbon storage? Marine Pollution Bulletin 73: 463–469.CrossRefGoogle Scholar
  45. Singh, G., D. Ganguly, A. Paneer Selvam, K. Banerjee, R. Purvaja, and R. Ramesh. 2015. Seagrass ecosystem and climate change: An Indian perspective. Journal of Climate Change 1: 67–74. doi: 10.3233/JCC-150005.CrossRefGoogle Scholar
  46. Sridhar, R., T. Thangaradjou, and L. Kannan. 2008. Comparative investigation of physico-chemical properties of coral reef and seagrass ecosystems of Palk Bay. Indian Journal of Marine Science 37: 207–213.Google Scholar
  47. Shrinithivihahshini, N.D., V. Rajendhiran, S. Mariyaselvam, C. Rengaraj, M. Duraisamy, and R. Dharmaraj. 2014. An assessment of religious ceremonies and their impact on the physico-chemical and microbiological characterization of foremost seawater in Navagraha Temple, Devipattinam, Tamil Nadu, India. Global Journal of Science Frontier Research: H Environment & Earth Science 14: 71–80.Google Scholar
  48. Strickland, J.D.H. and T.R. Parsons. 1972. A practical handbook of seawater analysis, 2nd ed. Fisheries Research Board of CanadaGoogle Scholar
  49. Tokoro, T., S. Hosokawa, E. Miyoshi, K. Tada, K. Watanabe, S. Montani, H. Kayanne, and T.I. Kuwae. 2014. Net uptake of atmospheric CO2 by coastal submerged aquatic vegetation. Global Change Biology 20: 1873–1884.CrossRefGoogle Scholar
  50. Unsworth, R.K.F., and L.C. Cullen. 2010. Recognising the necessity for Indo-Pacific seagrass conservation. Conservation Letters 3: 63–73.CrossRefGoogle Scholar
  51. Unsworth, R.K.F.C.J., M. Collier, L.J. Waycott, and L.Cullen-Unsworth Mckenzie. 2015. A framework for the resilience of seagrass ecosystems. Marine Pollution Bulletin 100: 34–46.CrossRefGoogle Scholar
  52. Wagner, W.E.I.I.I. 2016. Using IBM ® SPSS ® statistics for research methods and social science statistics. Thousand Oaks: Sage.Google Scholar
  53. Watanabe, K., and K. Tomohiro. 2015. Global Change Biology 21: 2612–2623. doi: 10.1111/gcb.12924.CrossRefGoogle Scholar
  54. Wu, M.-L., Y.G. Hong, J.P. Yin, J.D. Dong, and Y.S. Wang. 2016. Evolution of the sink and source of dissolved inorganic nitrogen with salinity as a tracer during summer in the Pearl River Estuary. Scientific Reports. doi: 10.1038/srep36638.Google Scholar
  55. Ziegler, S., and R. Benner. 1999. Nutrient cycling in the water column of a subtropical seagrass meadow. Marine Ecology Progress Series 188: 51–62.CrossRefGoogle Scholar

Copyright information

© Royal Swedish Academy of Sciences 2017

Authors and Affiliations

  • Dipnarayan Ganguly
    • 1
  • Gurmeet Singh
    • 1
  • Purvaja Ramachandran
    • 1
  • Arumughan Paneer Selvam
    • 1
  • Kakolee Banerjee
    • 1
  • Ramesh Ramachandran
    • 1
  1. 1.National Centre for Sustainable Coastal Management (NCSCM), Ministry of Environment, Forest and Climate Change (Government of India) Koodal Building, Anna University CampusChennaiIndia

Personalised recommendations