Nitrogen footprints: Regional realities and options to reduce nitrogen loss to the environment

Abstract

Nitrogen (N) management presents a sustainability dilemma: N is strongly linked to energy and food production, but excess reactive N causes environmental pollution. The N footprint is an indicator that quantifies reactive N losses to the environment from consumption and production of food and the use of energy. The average per capita N footprint (calculated using the N-Calculator methodology) of ten countries varies from 15 to 47 kg N capita−1 year−1. The major cause of the difference is the protein consumption rates and food production N losses. The food sector dominates all countries’ N footprints. Global connections via trade significantly affect the N footprint in countries that rely on imported foods and feeds. The authors present N footprint reduction strategies (e.g., improve N use efficiency, increase N recycling, reduce food waste, shift dietary choices) and identify knowledge gaps (e.g., the N footprint from nonfood goods and soil N process).

This is a preview of subscription content, access via your institution.

Fig. 1

References

  1. Bellarby, J., R. Tirado, A. Leip, F. Weiss, J.P. Lesschen, and P. Smith. 2013. Livestock greenhouse gas emissions and mitigation potential in Europe. Global Change Biology 19: 3–18.

    Article  Google Scholar 

  2. Bleeker, A., M. Sutton, W. Winiwater, and A. Leip. 2012. Economy-wide nitrogen balances and indicators: Concept and methodology. ENV/EPOC/WPEI 4: 3–22.

    Google Scholar 

  3. Bodirsky, B.L., A. Popp, H. Lotze-Campen, J.P. Dietrich, S. Rolinski, I. Weindl, C. Schmitz, C. Müller, et al. 2014. Reactive nitrogen requirements to feed the world in 2050 and potential to mitigate nitrogen pollution. Nature Communications 5: 3858. doi:10.1038/ncomms4858.

    CAS  Article  Google Scholar 

  4. Dalgaard, T., B. Hansen, B. Hasler, O. Hertel, N.J. Hutchings, B.H. Jacobsen, L.S. Jensen, B. Kronvang, et al. 2014. Policies for agricultural nitrogen management: Trends, challenges and prospects for improved efficiency in Denmark. Environmental Research Letters 9: 115002.

    Article  Google Scholar 

  5. Emerson, J.W., A. Hsu, M.A. Levy, A. de Sherbinin, V. Mara, D.C. Esty, and M. Jaiteh. 2012. 2012 Environmental Performance Index and Pilot Trend Environmental Performance Index. New Haven: Yale Center for Environmental Law and Policy.

    Google Scholar 

  6. Erisman, J.W., W. De Vries, H. Kros, O. Oenema, L. Van Der Eerden, H. Van Zeijts, and S. Smeulders. 2001. An outlook for a national integrated nitrogen policy. Environmental Science & Policy 4: 87–95.

    CAS  Article  Google Scholar 

  7. Erisman, J.W., N. Domburg, W. de Vries, H. Kros, B. de Haan, and K. Sanders. 2005. The Dutch N-cascade in the European perspective. Science in China. Series C, Life Sciences 48: 827–842.

    CAS  Article  Google Scholar 

  8. Erisman, J.W., J.N. Galloway, S. Seitzinger, A. Bleeker, N.B. Dise, R. Petrescu, A.M. Leach, and W. de Vries. 2013. Consequences of human modification of the global nitrogen cycle. Philosophical Transactions of the Royal Society B 368: 20130116. doi:10.1098/rstb.2013.0116.

    Article  Google Scholar 

  9. Erisman, J.W., J.A. Galloway, M.S. Sutton, Z. Klimont, and W. Winiwater. 2008. How a century of ammonia synthesis changed the world. Nature Geoscience 1: 636–639.

    CAS  Article  Google Scholar 

  10. Fowler, D., M. Coyle, U. Skiba, M.A. Sutton, J.N. Cape, S. Reis, L.J. Sheppard, A. Jenkins, et al. 2013. The global nitrogen cycle in the 21st century. Philosophical Transactions of the Royal Society B 368: 20130164. doi:10.1098/rstb.2013.0164.

    Article  Google Scholar 

  11. Freney, J.R. 2011. Management practices to increase efficiency of fertilizer and animal nitrogen and minimize nitrogen loss to the atmosphere and groundwater. In Proceedings of the International Seminar on Increased Agricultural Nitrogen Circulation in Asia: Technological Challenge to Mitigate Agricultural N Emissions. Taipei, Taiwan.

  12. Galloway, J.N., J.D. Aber, J.W. Erisman, S.P. Seitzinger, R.W. Howarth, E.B. Cowling, and B.J. Cosby. 2003. The nitrogen cascade. BioScience 53: 341–356.

  13. Galloway, J.N., F.J. Dentener, D.G. Capone, E.W. Boyer, R.W. Howarth, S.P. Seitzinger, G.P. Asner, C.C. Cleveland, et al. 2004. Nitrogen cycles: Past, present and future. Biogeochemistry 70: 153–226.

    CAS  Article  Google Scholar 

  14. Galloway, J.N., A.R. Townsend, J.W. Erisman, M. Bekunda, Z. Cai, J.R. Freney, L.A. Martinelli, S.P. Seitzinger, et al. 2008. Transformation of the nitrogen cycle: Recent trends, questions, and potential solutions. Science 320: 889–892.

  15. Galloway, J.N., A.M. Leach, A. Bleeker, and J.W. Erisman. 2013. A chronology of human understanding of the nitrogen cycle. Philosophical Transactions B 368: 20130120. doi:10.1098/rstb.2013.0120.

    Article  Google Scholar 

  16. Galloway, N.J., W. Winiwarter, A. Leip, A.M. Leach, A. Bleeker, and J.W. Erisman. 2014. Nitrogen footprints: Past, present and future. Environmental Research Letters 9: 115003.

    Article  Google Scholar 

  17. Geoscience Australia and BREE. 2014. Australian Energy Resource Assessment, 2nd ed. Canberra: Geoscience Australia.

    Google Scholar 

  18. Giller, K.E., P. Chalk, A. Dobermann, L. Hammond, P. Heffer, J.K. Ladha, P. Nyamudeza, L. Maene, et al. 2004. Emerging technologies to increase the efficiency of use of fertilizer nitrogen. In Agriculture and the nitrogen cycle: Assessing the impacts of fertilizer use on food production and the environment, ed. A.R. Mosier, J.K. Syers, and J.R. Freney, 35–51. Washington, DC: Island Press.

    Google Scholar 

  19. Graversgaard M., T. Dalgaard, A.M. Leach, L.R. Cattaneo, and J.N. Galloway. 2016. The Danish nitrogen footprint: Applying nitrogen footprints to build awareness about protein consumption and using policy scenarios to change behavior. In Proceedings of the 7th International Nitrogen Initiative Conference, Submitted.

  20. Gu, B., Y. Ge, Y. Ren, B. Xu, W. Luo, H. Jiang, B. Gu, and J. Chang. 2012. Atmospheric reactive nitrogen in China: Sources, recent trends, and damage costs. Environmental Science and Technology 46: 9420–9427.

    CAS  Article  Google Scholar 

  21. Gu, B., A.M. Leach, L. Ma, J.N. Galloway, S.X. Chang, Y. Ge, and J. Chang. 2013a. Nitrogen footprint in China: food, energy, and nonfood goods. Environmental Science and Technology 47: 9217–9224.

    CAS  Article  Google Scholar 

  22. Gu, B., J. Chang, Y. Min, Y. Ge, Q. Zhu, J.N. Galloway, and C. Peng. 2013b. The role of industrial nitrogen in the global nitrogen biogeochemical cycle. Scientific Reports 3: 2579.

    Google Scholar 

  23. Gu, B., X. Ju, J. Chang, Y. Ge, and P.M. Vitousek. 2015. Integrated reactive nitrogen budgets and future trends in China. Proceedings of the National Academy of Sciences of the United States of America 112: 8792–8797.

    CAS  Article  Google Scholar 

  24. Gustavsson, J., C. Cederberg, and U. Sonesson. 2011. Global food losses and food waste: Extent, causes and prevention. Study conducted for the International Congress SAVE FOOD! At Interpack2011, Düsseldorf/Germany. FAO, Rome. www.fao.org/docrep/014/mb060e/mb060e00.pdf.

  25. Lassaletta, L., G. Billen, B. Grizzetti, J. Garnier, A.M. Leach, and J.N. Galloway. 2014. Food and feed trade as a driver in the global nitrogen cycle: 50-year trends. Biogeochemistry 118: 225–241.

    Article  Google Scholar 

  26. Leach, A.M., J.N. Galloway, A. Bleeker, J.W. Erisman, R. Khon, and J. Kitzes. 2012. A nitrogen footprint model to help consumers understand their role in nitrogen losses to the environment. Environmental Development 1: 40–66.

    Article  Google Scholar 

  27. Leach, A.M., A.N. Majidi, J.N. Galloway, and A.J. Greene. 2013. Towards institutional sustainability: a nitrogen footprint model for a university. Sustainability: The Journal of Record 6: 211–219.

    Article  Google Scholar 

  28. Leach, A.M., K.A. Emery, J. Gephart, K.F. Davis, J.W. Erisman, A. Leip, M.L. Pace, P. D’Odorico, et al. 2016. Environmental impact food labels combining carbon, nitrogen, and water footprints. Food Policy 61: 213–223.

    Article  Google Scholar 

  29. Leip, A., A. Leach, P. Musinguzi, T. Tumwesigye, G. Olupot, J.S. Tenywa, J. Mudiope, O. Hutton, et al. 2014a. Nitrogen-neutrality: A step towards sustainability. Environmental Research Letters 9: 115001. doi:10.1088/1748-9326/9/11/115001.

    Article  Google Scholar 

  30. Leip, A., F. Weiss, J.P. Lesschen, and H. Westhoek. 2014b. The nitrogen footprint of food products in the European Union. The Journal of Agricultural Science 152: 20–33.

    Article  Google Scholar 

  31. Ma, L., F. Wang, W. Zhang, W. Ma, G. Velthof, W. Qin, O. Oenema, and F. Zhang. 2013. Environmental assessment of management options for nutrient flows in the food chain in China. Environmental Science and Technology 47: 7260–7268.

    CAS  Google Scholar 

  32. Makino, M. 2011. Fisheries management in Japan: Its institutional features and case studies, vol. 34. Dordrecht: Springer. doi:10.1007/978-94-007-1777-0.

    Book  Google Scholar 

  33. OECD. 2008. Environmental Performance of Agriculture in OECD Countries since 1990. ISBN 978-92-64-04092-2.

  34. Oenema, O. 2004. Governmental policies and measures regulating nitrogen and phosphorus from animal manure in European agriculture. Journal of Animal Science 82: 196–206.

    Google Scholar 

  35. Oita, A., A. Malik, K. Kanemoto, A. Geschke, S. Nishijima, and M. Lenzen. 2016a. Substantial nitrogen pollution embedded in international trade. Nature Geoscience 9: 111–115.

    CAS  Article  Google Scholar 

  36. Oita, A., I. Nagano, and I. Matsuda. 2016b. An improved methodology for calculating the nitrogen footprint of seafood. Ecological Indicators 60: 1091–1103.

    CAS  Article  Google Scholar 

  37. Origin. 2015. Coal in Australia. Origin Energy, Australia, Retrieved 22 July 2016, from https://www.originenergy.com.au/blog/about-energy/coal-in-australia.html.

  38. Pierer, M., W. Winiwarter, A.M. Leach, and J.N. Galloway. 2014. The nitrogen footprint of food products and general consumption patterns in Austria. Food Policy 49: 128–136.

    Article  Google Scholar 

  39. Rockström, J., W. Steffen, K. Noone, Å. Persson, F.S. Chapin III, E.F. Lambin, T.M. Lenton, M. Scheffer, et al. 2009. A safe operating space for humanity. Nature 461: 472–475.

    Article  Google Scholar 

  40. Shibata, H., L.R. Cattaneo, A.M. Leach, and J.N. Galloway. 2014. First approach to the Japanese nitrogen footprint model to predict the loss of nitrogen to the environment. Environmental Research Letters 9: 115013. doi:10.1088/1748-9326/9/11/115013.

    Article  Google Scholar 

  41. Shindo, J. 2012. Changes in the nitrogen balance in agricultural land in Japan and 12 other Asian Countries based on a nitrogen-flow model. Nutrient Cycling in Agroecosystems 94: 47–61.

    Article  Google Scholar 

  42. Steffen, W., K. Richardson, J. Rockström, S.E. Cornell, I. Fetzer, E.M. Bennett, R. Biggs, S.R. Carpenter, et al. 2015. Planetary boundaries: Guiding human development on a changing planet. Science 347: 1259855.

    Article  Google Scholar 

  43. Stevens, C.J., A.M. Leach, S. Dale, and J.N. Galloway. 2014. Personal nitrogen footprint tool for the United Kingdom. Environmental Sciences Processes Impacts 16: 1563–1569.

    CAS  Article  Google Scholar 

  44. Sutton, M.A., O. Oenema, J.E. Erisman, A. Leip, H. Van Grinsven, and W. Wilfried Winiwarter. 2011. Too much of a good thing. Nature 472: 159–161.

    CAS  Article  Google Scholar 

  45. Sutton, M.A., A. Bleeker, C.M. Howard, J.W. Erisman, Y.P. Abrol, M. Bekunda, A. Datta, E. Davidson, et al. 2013. Our Nutrient World: The challenge to produce more food and energy with less pollution. Centre for Ecology and Hydrology, Edinburgh on behalf of the Global Partnership on Nutrient Management and the International Nitrogen Initiative.

  46. Takemasa, M. 1998. Nutritional strategies to reduce nutrient waste in livestock and poultry production. Chemistry & Biology 36: 720–726 (in Japanese).

    CAS  Google Scholar 

  47. Tilman, D., and M. Clark. 2015. Food, agriculture & the environment: Can we feed the world & save the earth? Dædalus 144: 8–23.

    Google Scholar 

  48. van Grinsven, H.J.M., H.F.M. Ten Berge, T. Dalgaard, B. Fraters, P. Durand, A. Hart, G. Hofman, B.H. Jacobsen, et al. 2012. Management, regulation and environmental impacts of nitrogen fertilization in northwestern Europe under the Nitrates Directive: A benchmark study. Biogeosciences 9: 5143–5160.

  49. Vanham, D., F. Bouraoui, A. Leip, B. Grizzetti, and G. Bidoglio. 2015. Lost water and nitrogen resources due to EU consumer food waste. Environmental Research Letters 10: 84008–84022.

    Article  Google Scholar 

  50. Vitousek, P.M., D.N.L. Menge, S.C. Reed, and C.C. Cleveland. 2013. Biological nitrogen fixation: Rates, patterns, and ecological controls in terrestrial ecosystems. Philosophical Transactions of the Royal Society B 368: 20130119. doi:10.1098/rstb.2013.0119.

    Article  Google Scholar 

  51. Westhoek, H., J.P. Lesschen, T. Rood, S. Wagner, A. De Marco, D. Murphy-Bokern, A. Leip, H. Van Grinsven, et al. 2014. Food choices, health and environment: Effects of cutting Europe’s meat and dairy intake. Global Environmental Change. Elsevier Ltd. 26: 196–205.

    Article  Google Scholar 

  52. Westhoek H., J.P. Lesschen, A. Leip, T. Rood, S. Wagner, A. De Marco, D. Murphy-Bokern, C. Pallière, et al. 2015. Nitrogen on the table: The influence of food choices on nitrogen emissions and the European environment. (European Nitrogen Assessment Special Report on Nitrogen and Food.). Centre for Ecology and Hydrology, Edinburgh, UK.

  53. Winiwarter, W., J.W. Erisman, J.N. Gallowaym, Z. Klimont, and M. Sutton. 2013. Estimating environmental loads of reactive nitrogen in the 21st century. Climate Change 120: 889–901.

    Article  Google Scholar 

  54. World Nuclear Association. 2015. Australia’s Electricity. Retrieved 22 July, 2016, from http://www.world-nuclear.org/information-library/country-profiles/countries-a-f/appendices/australia-s-electricity.aspx.

Download references

Acknowledgments

We would like to thank all participants of the International Nitrogen Footprint Workshop held in Hokkaido University, Sapporo, Japan in March 16-18th, 2015 for helping to develop this manuscript. We also would like to thank the funding support for the workshop from The KAITEKI Institute Inc., Japan; Green Network of Excellence - Environmental information (funded by Ministry of Education, Culture, Sports, Science and Technology, Japan); National Institute for Agro-Environmental Sciences, Japan; National Institute for Environmental Studies, Japan; Ministry of Education, Taiwan; National Dong Hwa University, Taiwan; Advanced Research and Education Center for Steel (ARECS), Tohoku University, Japan. This research was also partly supported by Science and technology research promotion program for agriculture, forestry, fisheries and food industry; Environment Research and Technology Development Fund (S-15) of the Ministry of the Environment, Japan. This is a contribution to the N-PRINT project (www.n-print.org), the www.dNmark.org research alliance, and to the International Nitrogen Initiative (www.initrogen.org).

Author information

Affiliations

Authors

Corresponding author

Correspondence to Hideaki Shibata.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Shibata, H., Galloway, J.N., Leach, A.M. et al. Nitrogen footprints: Regional realities and options to reduce nitrogen loss to the environment. Ambio 46, 129–142 (2017). https://doi.org/10.1007/s13280-016-0815-4

Download citation

Keywords

  • Nitrogen cycle
  • Nitrogen effects
  • Nitrogen footprint
  • Nitrogen use efficiency