Ambio

, Volume 45, Issue 3, pp 331–349 | Cite as

Effect of catchment land use and soil type on the concentration, quality, and bacterial degradation of riverine dissolved organic matter

  • Iida Autio
  • Helena Soinne
  • Janne Helin
  • Eero Asmala
  • Laura Hoikkala
Report

Abstract

We studied the effects of catchment characteristics (soil type and land use) on the concentration and quality of dissolved organic matter (DOM) in river water and on the bacterial degradation of terrestrial DOM. The share of organic soil was the strongest predictor of high concentrations of dissolved organic carbon, nitrogen, and phosphorus (DOC, DON, and DOP, respectively), and was linked to DOM quality. Soil type was more important than land use in determining the concentration and quality of riverine DOM. On average, 5–9 % of the DOC and 45 % of the DON were degraded by the bacterial communities within 2–3 months. Simultaneously, the proportion of humic-like compounds in the DOM pool increased. Bioavailable DON accounted for approximately one-third of the total bioavailable dissolved nitrogen, and thus, terrestrial DON can markedly contribute to the coastal plankton dynamics and support the heterotrophic food web.

Keywords

Terrestrial dissolved organic matter Catchment characteristics Bacterial degradation DOM quality Bioavailability 

Notes

Acknowledgments

This study was a part of the MULTIDOM project funded by the Helsinki University Centre for environment HENVI. It has also been supported by the COCOA project (funded by the BONUS program for Baltic Sea research). The authors thank The Water Protection Association of the river Vantaanjoki and Helsinki Region (VHVSY) and especially limnologist Heli Vahtera for field support. Harri Kuosa, Hermanni Kaartokallio, and Riitta Autio are thanked for valuable consulting and Ville Paloheimo for graphical design.

References

  1. Apple, J., and P. del Giorgio. 2007. Organic substrate quality as the link between bacterioplankton carbon demand and growth efficiency in a temperate salt-marsh estuary. International Society for Microbial Ecology 1: 729–742.Google Scholar
  2. Asmala, E., R. Autio, H. Kaartokallio, L. Pitkänen, C.A. Stedmon, and D. Thomas. 2013. Bioavailability of riverine dissolved organic matter in three Baltic Sea estuaries and the effect of catchment land use. Biogeosciences 10: 6969–6986.CrossRefGoogle Scholar
  3. Berggren, M., H. Laudon, and M. Jansson. 2007. Landscape regulation of bacterial growth efficiency in boreal freshwaters. Global Biogeochemical Cycles. doi: 10.1029/2006GB002844.Google Scholar
  4. Berggren, M., H. Laudon, and M. Jansson. 2009. Aging of allochthonous organic carbon regulates bacterial production in unproductive boreal lakes. Limnology and Oceanography 54: 1333–1342.CrossRefGoogle Scholar
  5. Berggren, M., J.-F. Lapierre, and P. del Giorgio. 2012. Magnitude and regulation of bacterioplankton respiratory quotient across freshwater environmental gradients. Multidisciplinary Journal of Microbial Ecology 6: 984–993.Google Scholar
  6. Chantingy, M.H. 2003. Dissolved and water-extractable organic matter in soils: A review on the influence of land use and management practices. Geoderma 113: 357–380.CrossRefGoogle Scholar
  7. Coble, P. 1996. Characterization of marine and terrestrial DOM in seawater using excitation–emission matrix spectroscopy. Marine Chemistry 51: 325–346.CrossRefGoogle Scholar
  8. del Giorgio, P.A., and J.J. Cole. 1998. Bacterial growth efficiency in natural aquatic systems. Annual Review of Ecology and Systematics 29: 503–541.CrossRefGoogle Scholar
  9. Dupont, N., and D.L. Aksnes. 2013. Centennial changes in water clarity of the Baltic Sea and the North Sea. Estuarine, Coastal and Shelf Science 131: 282–289.CrossRefGoogle Scholar
  10. European Environmental Agency. 2010. Corine Land Cover 2006 raster data. Retrieved 15 April, 2015, from http://www.eea.europa.eu/data-and-maps/data/corine-land-cover-2006-raster.
  11. Fleming-Lehtinen, V., A. Räike, P. Kortelainen, P. Kauppila, and D.N. Thomas. 2014. Organic carbon concentration in the northern coastal Baltic Sea between 1975 and 2011. Estuaries and Coasts 38: 466–481.CrossRefGoogle Scholar
  12. Freeman, C., C.D. Evans, D.T. Monteith, B. Reynolds, and N. Fenner. 2001. Export of organic carbon from peat soils. Nature 412: 785.CrossRefGoogle Scholar
  13. Gasol, J.M., U.L. Zweifel, F. Peters, J.A. Fuhrman, and A. Hågström. 1999. Significance of size and nucleic acid content heterogeneity as measured by flow cytometry in natural planktonic bacteria. Applied and Environmental Microbiology 65: 4475–4483.Google Scholar
  14. Goldman, J.C., D.A. Caron, and M.R. Dennet. 1987. Regulation of gross growth efficiency and ammonium regeneration in bacteria by substrate C:N ratio. Limnology and Oceanography 32: 1239–1252.CrossRefGoogle Scholar
  15. Graeber, D., J. Gelbrecht, M.T. Pusch, C. Anlanger, and D. von Schiller. 2012. Agriculture has changed the amount and composition of dissolved organic matter in Central European headwater streams. Science of the Total Environment 438: 435–446.CrossRefGoogle Scholar
  16. Grasshoff, K., M. Erhardt, and K. Kremling (eds.). 1983. Methods of seawater analysis. Weinheim: Verlag Chemie.Google Scholar
  17. Haas, L.W. 1982. Improved epifluorescence microscopy for observing planktonic micro-organisms. Annales de l’Institut océanographique (Paris) 58: 261–266.Google Scholar
  18. Hänninen, S. 1997. Agricultural water protection project in the Vantaanjoki river area. Vantaanjoen ja Helsingin seudun vesiensuojeluyhdistys. Julkaisu nr. 41. Helsinki (In Finnish).Google Scholar
  19. Hoikkala, L., P. Kortelainen, H. Soinne, and H. Kuosa. 2015. Dissolved organic matter in the Baltic Sea. Journal of Marine Sytems 142: 47–61.CrossRefGoogle Scholar
  20. Huang, M., T. Liang, Z. Ou-Yang, L. Wang, C. Zhang, and C. Zhu. 2011. Leaching losses of nitrate nitrogen and dissolved organic nitrogen from a yearly two crops system, wheat-maize, under monsoon situations. Nutrient Cycling in Agroecosystems 91: 77–89.CrossRefGoogle Scholar
  21. Huhta, E.L., and A. Jaakkola. 1994. The effect of crop and fertilization on the leaching of nutrients from a peatland in the Tohmajärvi leaching fields in 1983–87. Maatalouden tutkimuskeskus, Tiedote 20/93 (In Finnish).Google Scholar
  22. IUSS Working Group WRB. 2014. World Reference Base for Soil Resources 2014. International soil classification system for naming soils and creating legends for soil maps. World Soil Resources Reports No. 106. FAO, Rome.Google Scholar
  23. Jørgensen, L., C.A. Stedmon, M.A. Granskog, and M. Middelboe. 2014. Tracing the long-term microbial production of recalcitrant fluorescent dissolved organic matter in seawater. Geophysical Research Letters 41: 2481–2488.CrossRefGoogle Scholar
  24. Kaiser, K., G. Guggenberger, and W. Zech. 1996. Sorption of DOM and DOM fractions to forest soils. Geoderma 74: 281–303.CrossRefGoogle Scholar
  25. Kawasaki, N., and R. Benner. 2006. Bacterial release of dissolved organic matter during cell growth and decline: Molecular origin and composition. Limnology and Oceanography 51: 2170–2180.CrossRefGoogle Scholar
  26. Kirchmann, H., J.A.E. Johnston, and L.F. Bergström. 2002. Possibilities for reducing nitrate leaching from agricultural land. Ambio 31: 404–408.CrossRefGoogle Scholar
  27. Kortelainen, P., T. Mattsson, L. Finér, M. Ahtiainen, S. Saukkonen, and T. Sallantus. 2006. Controls on the export of C, N, P and Fe from undisturbed boreal catchments, Finland. Aquatic Sciences 68: 453–468.CrossRefGoogle Scholar
  28. Korth, F., B. Deutsch, I. Liskow, and M. Voss. 2012. Uptake of dissolved organic nitrogen by size-fractionated plankton along a salinity gradient from the North Sea to the Baltic Sea. Biogeochemistry 111: 347–360.CrossRefGoogle Scholar
  29. Laudon, H., S. Köhler, and I. Buffam. 2004. Seasonal TOC export from seven boreal catchments in northern Sweden. Aquatic Sciences 66: 223–230.CrossRefGoogle Scholar
  30. Lepistö, A., P. Kortelainen, and T. Mattsson. 2008. Increased organic C and N leaching in a northern boreal river basin in Finland. Global Biogeochemical Cycles. doi: 10.1029/2007GB003175.Google Scholar
  31. Lignell, R., L. Hoikkala, and T. Lahtinen. 2008. Effects of inorganic nutrients, glucose and solar radiation on bacterial growth and exploitation of dissolved organic carbon and nitrogen in the northern Baltic Sea. Aquatic Microbial Ecology 51: 209–221.CrossRefGoogle Scholar
  32. Marie, D., F. Partensky, and D. Vaulot. 1996. Application of the novel nucleic acid dyes YOYO-1. YOPRO-1 and PicoGreen for flow cytometric analysis of marine prokaryotes. Applied Environmental Microbiology 62: 1649–1655.Google Scholar
  33. Mattsson, T., P. Kortelainen, and A. Räike. 2005. Export of DOM from boreal catchments: Impacts of land use cover and climate. Biogeochemistry 76: 373–394.CrossRefGoogle Scholar
  34. Mattsson, T., P. Kortelainen, A. Laubel, D. Evans, M. Pujo-Pay, A. Räike, and P. Conan. 2009. Export of dissolved organic matter in relation to land use along a European climatic gradient. Science of the Total Environment 407: 1967–1976.CrossRefGoogle Scholar
  35. Mattsson, T., P. Kortelainen, A. Räike, A. Lepistö, and D.N. Thomas. 2015. Spatial and temporal variability of organic C and N concentrations and export from 30 boreal rivers induced by land use and climate. Science of the Total Environment 508: 145–154.CrossRefGoogle Scholar
  36. Maurice, P.A., S.E. Cabaniss, J. Drummond, and E. Ito. 2002. Hydrogeochemical controls on the variations in chemical characteristics of natural organic matter at a small freshwater wetland. Chemical Geology 187: 59–77.CrossRefGoogle Scholar
  37. McDowell, W.H. 1998. Internal nutrient fluxes in a Puerto Rican rain forest. Journal of Tropical Ecology 14: 521–536.CrossRefGoogle Scholar
  38. McKnight, D., E. Boyer, P. Westerhoff, P. Doran, T. Kulbe, and D. Andersen. 2001. Spectrofluorometric characterization of dissolved organic matter for indication of precursor organic material and aromaticity. Limnology and Oceanography 46: 38–48.CrossRefGoogle Scholar
  39. Mobed, J.J., S.L. Hemmingsen, J.L. Autry, and L.B. McGown. 1996. Fluorescence characterization of IHSS humic substances: Total luminescence spectra with absorbance correction. Environmental Science & Technology 30: 3061–3065.Google Scholar
  40. Norland, S. 1993. Relationship between biomass and volume of bacteria. In Handbook of methods in aquatic microbial ecology, ed. P. Kemp, B. Sherr, E. Sherr, and J. Cole, 303–306. Boca Raton, Florida: CRC Press.Google Scholar
  41. Pärn, J., and Ü. Mander. 2012. Increased organic carbon concentrations in Estonian rivers in the period 1992–2007 as affected by deepening droughts. Biogeochemistry 108: 351–358.CrossRefGoogle Scholar
  42. Räike, A., P. Kortelainen, T. Mattsson, and D.N. Thomas. 2012. 36 year trends in dissolved organic carbon export from Finnish rivers to the Baltic Sea. Science of the Total Environment 435–436: 188–201.CrossRefGoogle Scholar
  43. Romera-Castillo, C., H. Sarmento, X.A. Álvarez-Salgado, J.M. Gasol, and C. Marrasé. 2011. Net production and consumption of fluorescent colored dissolved organic matter by natural bacterial assemblages growing on marine phytoplankton exudates. Applied and Environmental Microbiology 77: 7490–7498.CrossRefGoogle Scholar
  44. Sandberg, J., A. Andersson, S. Johansson, and J. Wikner. 2004. Pelagic food web structure and carbon budget in the northern Baltic Sea: Potential importance of terrigenous carbon. Marine Ecology Progress Series 268: 13–29.CrossRefGoogle Scholar
  45. Seitzinger, S.P., R.W. Sanders, and R. Styles. 2002. Bioavailability of DON from natural and anthropogenic sources to estuarine plankton. Limnology and Oceanography 47: 353–366.CrossRefGoogle Scholar
  46. Stedmon, C.A., S. Markager, and H. Kaas. 2000. Optical properties and signatures of chromophoric dissolved organic matter (CDOM) in Danish coastal waters. Estuarine, Coastal and Shelf Science 51: 267–278.Google Scholar
  47. Stedmon, C.A., S. Markager, M. Sondergaard, T. Vang, A. Laubel, N.H. Borch, and A. Windelin. 2006. Dissolved Organic Matter (DOM) export to a temperate estuary: Seasonal variations and implications of land use. Estuaries and Coasts 29: 388–400.CrossRefGoogle Scholar
  48. Stepanauskas, R., N.O. Jørgensen, O.R. Eigaard, A. Žvikas, L.J. Tranvik, and L. Leonardson. 2002. Summer inputs of riverine nutrients to the Baltic Sea: Bioavailability and eutrophication relevance. Ecological Monographs 72: 579–597.CrossRefGoogle Scholar
  49. Straile, D. 1997. Gross growth efficiencies of protozoan and metazoan zooplankton and their dependence on food concentration, predator-prey weight ratio, and taxonomic group. Limnology and Oceanography 42: 1375–1385.CrossRefGoogle Scholar
  50. Tarboton, D., D. Watson, and R. Wallace. 2012. Terrain analysis using Digital Elevation Models (TauDEM). http://hydrology.usu.edu/taudem/taudem5/TauDEM_4_12.pptx.
  51. Vähätalo, A.V., H. Aarno, and S. Mäntyniemi. 2010. Biodegradability continuum and biodegradation kinetics of natural organic matter described by beta distribution. Biogeochemistry 11: 227–240.Google Scholar
  52. Vahtera, H., J. Männynsalo, and K. Lahti. 2014. Joint survey of the Vantaanjoki river—Water quality in 2011–2013. Vantaanjoen ja Helsingin seudun vesiensuojeluyhdistys ry. Julkaisu nr. 72 (In Finnish).Google Scholar
  53. Van Kessel, C., T. Clough, and J.W. van Groenigen. 2009. Dissolved organic nitrogen: An overlooked pathway of nitrogen loss from agricultural system? Journal of Environmental Quality 38: 393–401.CrossRefGoogle Scholar
  54. Weishaar, J.L., G.R. Aiken, B.A. Bergamaschi, M.S. Fram, R. Fujii, and K. Mopper. 2003. Evaluation of specific ultraviolet absorbance as an indicator of the chemical composition and reactivity of dissolved organic carbon. Environmental Science and Technology 37: 4702–4708.CrossRefGoogle Scholar
  55. Wilson, H.F., and M.A. Xenopoulos. 2008. Ecosystem and seasonal control of stream dissolved organic carbon along a gradient of land use. Ecosystems 11: 555–568.CrossRefGoogle Scholar

Copyright information

© Royal Swedish Academy of Sciences 2015

Authors and Affiliations

  • Iida Autio
    • 1
  • Helena Soinne
    • 2
  • Janne Helin
    • 3
  • Eero Asmala
    • 4
  • Laura Hoikkala
    • 5
  1. 1.Department of Environmental SciencesUniversity of HelsinkiHelsinkiFinland
  2. 2.Department of Food and Environmental SciencesUniversity of HelsinkiHelsinkiFinland
  3. 3.Luke (Natural Resources Institute Finland)HelsinkiFinland
  4. 4.Department of BioscienceAarhus UniversityRoskildeDenmark
  5. 5.SYKE Marine Research LaboratoryHelsinkiFinland

Personalised recommendations