, Volume 44, Issue 7, pp 685–693 | Cite as

LivestockPlus: Forages, sustainable intensification, and food security in the tropics

  • Thomas K. Rudel
  • Birthe Paul
  • Douglas White
  • I. M. Rao
  • Rein Van Der Hoek
  • Aracely Castro
  • Maryline Boval
  • Amy Lerner
  • Laura Schneider
  • Michael Peters


The increased use of grain-based feed for livestock during the last two decades has contributed, along with other factors, to a rise in grain prices that has reduced human food security. This circumstance argues for feeding more forages to livestock, particularly in the tropics where many livestock are reared on small farms. Efforts to accomplish this end, referred to as the ‘LivestockPlus’ approach, intensify in sustainable ways the management of grasses, shrubs, trees, and animals. By decoupling the human food and livestock feed systems, these efforts would increase the resilience of the global food system. Effective LivestockPlus approaches take one of two forms: (1) simple improvements such as new forage varieties and animal management practices that spread from farmer to farmer by word of mouth, or (2) complex sets of new practices that integrate forage production more closely into farms’ other agricultural activities and agro-ecologies.


Forages Livestock Livestock plus Sustainable intensification Tropics 



Funds from the U.S. National Science Foundation Grant #1009499 supported this research.


  1. Almeida, R., C. Andrade, D. Paciullo, P. Fernandes, A. Cavalcante, R. Barbosa, and C. Valle. 2013. Brazilian agroforestry systems for cattle and sheep. Tropical Grasslands Forrajes Tropicales 1: 175–183.CrossRefGoogle Scholar
  2. Artiles, E., R. Van Der Hoek, R. Lima Orozco, C. Rodriguez, S. Hoede, P. Sarria, and S. Martens. 2012. Performance of pigs fed with fresh and ensiled forage of Vigna unguiculata CIAT 4555, Lablab purpureus CIAT 22759 and Cajanus cajan. Proceedings of the XVI international silage conference, Helsinki, Finland.Google Scholar
  3. Cassidy, E., P. West, J. Gerber, and J. Foley. 2013. Redefining agricultural yield: From tonnes to people nourished per hectare. Environmental Research Letters. doi: 10.1088/1748-9326/8/3/034015.Google Scholar
  4. CIAT (International Center for Tropical Agriculture). 2012. More chicken and pork in the pot, and money in pocket: Improving forages for monogastric animals with low-income farmers. Final project report submitted to Bundesministerium für Wirtschaftliche Zusammenarbeit und Entwicklung (BMZ), Cali, Colombia.Google Scholar
  5. Coffey, L. 2001. Multispecies grazing. Appropriate Technology Transfer for Rural Areas (ATTRA). Retrieved from
  6. D’Alexis, S., D. Sauvant, and M. Boval. 2013. Mixed grazing systems of sheep and cattle to improve liveweight gain: a quantitative review. Journal of Agricultural Science. doi: 10.1017/S0021859613000622.
  7. De Groote, H., B. Vanlauwe, E. Rutto, G. Odhiambo, F. Kanampiu, and Z. Khan. 2010. Economic analysis of different options in integrated pest and soil fertility management in maize systems of Western Kenya. Agricultural Economics 41: 471–482.CrossRefGoogle Scholar
  8. Fisher, M., I. Rao, M. Ayarza, C. Lascano, J. Sanz, R. Thomas, and R. Vera. 1994. Carbon storage by introduced deep-rooted grasses in the South American savannas. Nature 371: 236–238.CrossRefGoogle Scholar
  9. Fligstein, N., and D. MacAdam. 2012. A theory of fields. New York: Oxford University Press.CrossRefGoogle Scholar
  10. Food and Agriculture Organization of the United Nations. 2009. The state of food and agriculture, 2009: Livestock in the balance. Retrieved June 3, 2014, from
  11. Food and Agriculture Organization of the United Nations. 2014a. The use of concentrate feeds in livestock production. Retrieved April 15, 2014, from
  12. Food and Agriculture Organization of the United Nations. 2014b. FAOSTAT. Retrieved April 15, 2014, from
  13. Fujisaka, S., F. Holmann, M. Peters, A. Schmidt, D. White, C. Burgos, J. Ordoñez, M. Mena, et al. 2005. Estrategias para minimizar la escasez de forrajes en zonas con sequías prolongadas en Honduras y Nicaragua. Pasturas Tropicales 27: 73–92.Google Scholar
  14. Haynes, R., and P. Williams. 1993. Nutrient cycling and soil fertility in the grazed pasture ecosystem. Advances in Agronomy 49: 119–199.CrossRefGoogle Scholar
  15. Herrero, M., P. Pavlik, H. Valin, A. Notenbaert, M. Rufino, P. Thornton, M. Blummel, F. Weiss, et al. 2013. Global livestock systems: Biomass use, production, feed efficiencies, and greenhouse gas emissions. Proceedings of the National Academy of Sciences 110: 20888–20893.CrossRefGoogle Scholar
  16. Jackson, F., M. Varady, and D. Bartley. 2011. Managing anthelmintic resistance in goats: Can we learn lessons from sheep? Small Ruminants Research 103: 3–9.CrossRefGoogle Scholar
  17. Jank, L., S. Barrios, C. do Valle, R. Simeáo, and G. Alves. 2014. The value of improved pastures to Brazilian beef production. Crop and Pasture Science. doi: 10.1071/CP13319.Google Scholar
  18. Khan, Z., C. Midega, D. Amudavi, A. Hassanali, and J. Pickett. 2008a. On-farm evaluation of the “push–pull” technology for the control of stemborers and striga weed on maize in western Kenya. Field Crops Research 106: 224–233.CrossRefGoogle Scholar
  19. Khan, Z., D. Amudavi, C. Midega, J. Wanyama, and J. Pickett. 2008b. Farmers’ perceptions of a “push–pull” technology for control of cereal stemborers and Striga weed in western Kenya. Crop Protection 27: 976–987.CrossRefGoogle Scholar
  20. Khan, Z., C. Midega, J. Pittchar, J. Pickett, and T. Bruce. 2011. Push–pull technology: A conservation agriculture approach for integrated management of insect pests, weeds and soil health in Africa. International Journal of Agricultural Sustainability 9: 162–170. doi: 10.3763/ijas.2010.0558.CrossRefGoogle Scholar
  21. Khan, Z., C. Midega, J. Pittchar, A. Murage, M. Birkett, T. Bruce, and J. Pickett. 2014. Achieving food security for one million sub-Saharan African poor through push–pull innovation by 2020. Philosophical Transactions of the Royal Society, Series B. Biological Sciences 369: 20120284. doi: 10.1098/rstb.2012.0284.CrossRefGoogle Scholar
  22. Lambin, E., H. Gibbs, L. Ferreira, R. Grau, P. Mayaux, P. Meyfroidt, D. Morton, T. Rudel, et al. 2013. Estimating the world’s potentially available cropland using a bottom-up approach. Global Environmental Change 23: 892–901.CrossRefGoogle Scholar
  23. Lukuyu, B., S. Franzel, P. Ongadi, and A. Duncan. 2011. Livestock feed resources: Current production and management practices in central and northern rift valley provinces of Kenya. Livestock Research for Rural Development 23.Google Scholar
  24. Maass, B., M. Katunga, W. Chiuri, A. Gassner, and M. Peters. 2012. Challenges and opportunities for smallholder livestock production in post-conflict South Kivu, Eastern DR Congo. Tropical Animal Health and Production 44: 1221–1232.CrossRefGoogle Scholar
  25. Montpellier Panel. 2013. Sustainable intensification: A new paradigm for African agriculture. London: Agriculture for Impact, Imperial College.Google Scholar
  26. Notenbaert, A., M. Herrero, R. Kruska, L. You, S. Wood, P. Thornton, and A. Omolo. 2009. Classifying livestock production systems for targeting agricultural research and development in a rapidly changing world. ILRI Discussion Paper No. 19 (p. 41). Nairobi, Kenya.Google Scholar
  27. Peters, M., C. Lascano, R. Roothaert, and N. de Haan. 2003. Linking research on forage germplasm to farmers: The pathway to increased adoption—A CIAT, ILRI and IITA perspective. Field Crops Research 84: 179–188.CrossRefGoogle Scholar
  28. Pitesky, M., K. Stackhouse, and F. Mitloehner. 2009. Clearing the air: Livestock’s contribution to climate change. Advances in Agronomy 103: 3–40.Google Scholar
  29. Rao, I., M. Peters, A. Castro, R. Schultze-Kraft, D. White, M. Fisher, J. Miles, C. Lascano, et al. 2015. Livestock Plus: Sustainable intensification of forage-based systems for improving livelihoods and enhancing ecosystem services in the tropics. Tropical GrasslandsForrajes Tropicales (in press).Google Scholar
  30. Rivas, L., and F. Holmann. 2004. Impacto de la Adopción de Híbridos de Brachiarias Resistentes al Salivazo en Colombia, México y Centroamérica. Cali: CIAT.Google Scholar
  31. Settle, W., and M. Hama Garba. 2011. Sustainable crop production intensification in the Senegal and Niger River basins of francophone West Africa. International Journal of Agricultural Sustainability 9: 171–185.CrossRefGoogle Scholar
  32. Sumberg, J. 2002. The logic of fodder legumes in Africa. Food Policy 27: 285–300.CrossRefGoogle Scholar
  33. Thomas, D., and J. Sumberg. 1995. A review of the evaluation and use of tropical forage legumes in sub-Saharan Africa. Agriculture, Ecosystems & Environment 54: 151–163.CrossRefGoogle Scholar
  34. Thornton, P.K. 2010. Livestock production: Recent trends, future prospects. Philosophical Transactions of the Royal Society, Series B: Biological Sciences 365: 2853–2867. doi: 10.1098/rstb.2010.0134.CrossRefGoogle Scholar
  35. Torres-Acosta, J., M. Molento, and P. Mendoza de Gives. 2012. Research and implementation of novel approaches for the control of nematode parasites in Latin America and the Caribbean: Is there sufficient incentive for a greater extension effort? Veterinary Parasitology 186: 132–142.CrossRefGoogle Scholar
  36. Trostle, R. 2008. Global agricultural supply and demand: Factors contributing to the recent increase in food commodity prices. Economic Research Service, United States Department of Agriculture. WRS-0801, Washington, DC.Google Scholar
  37. Vanlauwe, B., F. Kanampiu, G. Odhiambo, H. De Groote, L. Wadhams, and Z. Khan. 2008. Integrated management of Striga hermonthica, stemborers, and declining soil fertility in western Kenya. Field Crops Research 107: 102–115.CrossRefGoogle Scholar
  38. World Bank. 1998. Rural well-being: From vision to action. In Proceedings of the fourth annual World Bank conference on environmentally sustainable development. ed. I. Serageldin and D. Steeds, 434 pp. Washington, DC.Google Scholar

Copyright information

© Royal Swedish Academy of Sciences 2015

Authors and Affiliations

  • Thomas K. Rudel
    • 1
  • Birthe Paul
    • 2
  • Douglas White
    • 3
  • I. M. Rao
    • 4
  • Rein Van Der Hoek
    • 5
  • Aracely Castro
    • 4
  • Maryline Boval
    • 6
  • Amy Lerner
    • 7
  • Laura Schneider
    • 8
  • Michael Peters
    • 4
  1. 1.New BrunswickUSA
  2. 2.International Centre of Insect Physiology and Ecology (ICIPE)NairobiKenya
  3. 3.Research for Development and ConservationBurlingtonUSA
  4. 4.CaliColombia
  5. 5.ManaguaNicaragua
  6. 6.Domaine DuclosPetit-Bourg, GuadeloupeFrance
  7. 7.Woodrow Wilson SchoolPrinceton UniversityPrincetonUSA
  8. 8.PiscatawayUSA

Personalised recommendations