AMBIO

, Volume 42, Issue 1, pp 5–12 | Cite as

Science with Society in the Anthropocene

  • Roman Seidl
  • Fridolin Simon Brand
  • Michael Stauffacher
  • Pius Krütli
  • Quang Bao Le
  • Andy Spörri
  • Grégoire Meylan
  • Corinne Moser
  • Monica Berger González
  • Roland Werner Scholz
Perspective

Abstract

Interdisciplinary scientific knowledge is necessary but not sufficient when it comes to addressing sustainable transformations, as science increasingly has to deal with normative and value-related issues. A systems perspective on coupled human–environmental systems (HES) helps to address the inherent complexities. Additionally, a thorough interaction between science and society (i.e., transdisciplinarity = TD) is necessary, as sustainable transitions are sometimes contested and can cause conflicts. In order to navigate complexities regarding the delicate interaction of scientific research with societal decisions these processes must proceed in a structured and functional way. We thus propose HES-based TD processes to provide a basis for reorganizing science in coming decades.

Keywords

Transdisciplinarity Human–environment systems Science and society Local–global scales 

Notes

Acknowledgments

The authors thank Ralf Seppelt and Ulli Vilsmaier for comments on an earlier draft and Sandro Bösch for developing the figures in their current form. We thank Heather Murray for English language editing.

References

  1. Barth, M., J. Godemann, M. Rieckmann, and U. Stoltenberg. 2007. Developing key competencies for sustainable development in higher education. International Journal of Sustainability in Higher Education 8: 416–430. doi: 10.1108/14676370710823582.CrossRefGoogle Scholar
  2. Clark, W.C., and N.M. Dickson. 2003. Sustainability science: The emerging research program. Proceedings of the National Academy of Sciences of the United States of America 100: 8059–8061. doi: 10.1073/pnas.1231333100.CrossRefGoogle Scholar
  3. Cundill, G., and R. Rodela. 2012. A review of assertions about the processes and outcomes of social learning in natural resource management. Journal of Environmental Management 113: 7–14. doi: 10.1016/j.jenvman.2012.08.021.CrossRefGoogle Scholar
  4. Folke, C. 2006. Resilience: The emergence of a perspective for social–ecological systems analyses. Global Environmental Change-Human and Policy Dimensions 16: 253–267. doi: 10.1016/j.gloenvcha.2006.04.002.CrossRefGoogle Scholar
  5. Funtowicz, S.O., and J.R. Ravetz. 2001. Global risk, uncertainty, and ignorance. In Global environmental risks, ed. J.X. Kasperson, and R.E. Kasperson, 173–194. London: Earthscan.Google Scholar
  6. Gibbons, M. 1999. Science’s new social contract with society. Nature 402: C81–C84.CrossRefGoogle Scholar
  7. Gibbons, M., H. Nowotny, and C. Limoges. 1994. The new production of knowledge: The dynamics of science and research in contemporary societies. London: Sage.Google Scholar
  8. Gunderson, L., and C.S. Holling. 2002. Panarchy: Understanding transformations in human and natural systems. Washington, DC: Island Press.Google Scholar
  9. Guston, D.H. 2001. Boundary organizations in environmental policy and science: An introduction. Science, Technology and Human Values 26: 399–408.CrossRefGoogle Scholar
  10. Haberl, H., M. Fischer-Kowalski, F. Krausmann, H. Weisz, and V. Winiwarter. 2004. Progress towards sustainability? What the conceptual framework of material and energy flow accounting (MEFA) can offer. Land Use Policy 21: 199–213. doi: 10.1016/j.landusepol.2003.10.013.CrossRefGoogle Scholar
  11. Habermas, J. 1984. The theory of communicative action (Vol. 1: Reason and the rationalization of society). Boston: Beacon Press.Google Scholar
  12. Hukkinen, J., L. Müller-Wille, P. Aikio, H. Heikkinen, O. Jääskö, A. Laakso, H. Magga, S. Nevalainen, et al. 2006. Development of participatory institutions for reindeer management in Finland: A diagnosis of deliberation, knowledge integration and sustainability. In Reindeer Management in northernmost Europe. Ecological Studies 184, ed. B. Forbes, M. Bölter, L. Müller-Wille, J. Hukkinen, F. Müller, N. Gunslay, and Y. Konstantinov, 47–71. Berlin: Springer.Google Scholar
  13. Jantsch, E. 1970. Inter- and transdisciplinary university: A systems approach to education and innovation. Higher Education Quarterly 1: 7–37. doi: 10.1007/BF00145222.CrossRefGoogle Scholar
  14. Krütli, P., T. Flüeler, M. Stauffacher, A. Wiek, and R.W. Scholz. 2010a. Technical safety vs. public involvement? A case study on the unrealized project for the disposal of nuclear waste at Wellenberg (Switzerland). Journal of Integrative Environmental Sciences 7: 229–244. doi: 10.1080/1943815x.2010.506879.CrossRefGoogle Scholar
  15. Krütli, P., M. Stauffacher, T. Flüeler, and R.W. Scholz. 2010b. Functional-dynamic public participation in technological decision-making: Site selection processes of nuclear waste repositories. Journal of Risk Research 13: 861–875. doi: 10.1080/13669871003703252.CrossRefGoogle Scholar
  16. Leshner, A. 2002. Science and sustainability. Science 297: 897. doi: 10.1126/science.297.5583.897.CrossRefGoogle Scholar
  17. Liu, J., T. Dietz, S.R. Carpenter, C. Folke, M. Alberti, C.L. Redman, S.H. Schneider, E. Ostrom, et al. 2007a. Coupled human and natural systems. AMBIO 36: 639–649.CrossRefGoogle Scholar
  18. Liu, J.G., T. Dietz, S.R. Carpenter, M. Alberti, C. Folke, E. Moran, A.N. Pell, P. Deadman, et al. 2007b. Complexity of coupled human and natural systems. Science 317: 1513–1516. doi: 10.1126/science.1144004.CrossRefGoogle Scholar
  19. Martens, P., N. Roorda, and R. Cörvers. 2010. Sustainability, science, and higher education—The need for new paradigms. Sustainability 3: 294–303. doi: 10.1089/SUS.2010.9744.CrossRefGoogle Scholar
  20. McMichael, A.J., C.D. Butler, and C. Folke. 2003. New visions for addressing sustainability. Science 302: 1919–1920. doi: 10.1126/science.1090001.Google Scholar
  21. Mostashari, A., and J. Sussman. 2009. Framework for analysis, design and management of complex large-scale interconnected open socio-technological systems. International Journal of Decision Support System Technology 52–68. doi: 10.4018/jdsst.2009040104.
  22. Nowotny, H. 2003. Democratising expertise and socially robust knowledge. Science and Public Policy 30: 151–156. doi: 10.3152/147154303781780461.CrossRefGoogle Scholar
  23. Ostrom, E. 2009. A general framework for analyzing sustainability of social–ecological systems. Science 325: 419–422. doi: 10.1126/science.1172133.CrossRefGoogle Scholar
  24. Raven, P.H. 2002. Science, sustainability, and the human prospect. Science 297: 954–958. doi: 10.1126/science.297.5583.954.CrossRefGoogle Scholar
  25. Reid, L., P. Sutton, and C. Hunter. 2010a. Theorizing the meso level: The household as a crucible of pro-environmental behaviour. Progress in Human Geography 34: 309–327. doi: 10.1177/0309132509346994.CrossRefGoogle Scholar
  26. Reid, W.V., D. Chen, L. Goldfarb, H. Hackmann, Y.T. Lee, K. Mokhele, E. Ostrom, K. Raivio, et al. 2010b. Earth system science for global sustainability: Grand challenges. Science 330: 916–917. doi: 10.1126/science.1196263.CrossRefGoogle Scholar
  27. Rowe, D. 2007. Education for a sustainable future. Science 317: 323–324. doi: 10.1126/science.1143552.CrossRefGoogle Scholar
  28. Ruddiman, W.F. 2003. The anthropogenic greenhouse era began thousands of years ago. Climatic Change 61: 261–293. doi: 10.1023/B:CLIM.0000004577.17928.fa.CrossRefGoogle Scholar
  29. Ruddiman, W.F. 2007. The early anthropogenic hypothesis: Challenges and responses. Reviews of Geophysics 45: 1–37. doi: 10.1029/2006RG000207.CrossRefGoogle Scholar
  30. Scholz, R.W. 2011. Environmental literacy in science and society: From knowledge to decisions. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
  31. Scholz, R.W., D.J. Lang, A. Wiek, A.I. Walter, and M. Stauffacher. 2006. Transdisciplinary case studies as a means of sustainability learning. International Journal of Sustainability in Higher Education 7: 226–251. doi: 10.1108/14676370610677829.CrossRefGoogle Scholar
  32. Scholz, R. W., A. Roy, F. S. Brand, D. T. Hellums, and A. E. Ullrich (eds.). in preparation. In Sustainable phosphorus management: A transdisciplinary roadmap. New York: Springer.Google Scholar
  33. Scholz, R.W., and M. Stauffacher. 2007. Managing transition in clusters: Area development negotiations as a tool for sustaining traditional industries in a Swiss prealpine region. Environment and Planning A 39: 2518–2539. doi: 10.1068/a38318.CrossRefGoogle Scholar
  34. Scholz, R.W., and O. Tietje. 2002. Embedded case study methods: Integrating quantitative and qualitative knowledge. Thousand Oaks: Sage.Google Scholar
  35. Seidl, R., and Q.B. Le. 2012. Modelling human–environment systems in transdisciplinary processes. In International Congress on Environmental Modelling and Software: Managing Resources of a Limited Planet. International Environmental Modelling and Software Society (iEMSs), Sixth Biennial Meeting, Leipzig, Germany, ed. R. Seppelt, A.A. Voinov, S. Lange, and D. Bankamp, 1811–1818.Google Scholar
  36. Stauffacher, M., T. Flüeler, P. Krütli, and R.W. Scholz. 2008. Analytic and dynamic approach to collaboration: A transdisciplinary case study on sustainable landscape development in a Swiss Prealpine region. Systemic Practice and Action Research 21: 409–422. doi: 10.1007/s11213-008-9107-7.CrossRefGoogle Scholar
  37. Stauffacher, M., A. Walter, D.J. Lang, A. Wiek, and R.W. Scholz. 2006. Learning to research environmental problems from a functional socio-cultural constructivism perspective: The transdisciplinary case study approach. International Journal of Sustainability in Higher Education 7: 252–275. doi: 10.1108/14676370610677838.CrossRefGoogle Scholar
  38. Steffen, W., Å. Persson, L. Deutsch, J. Zalasiewicz, M. Williams, K. Richardson, C. Crumley, P. Crutzen, et al. 2011. The Anthropocene: From global change to planetary stewardship. AMBIO 40: 739–761. doi: 10.1007/s13280-011-0185-x.CrossRefGoogle Scholar
  39. Thompson Klein, J., W. Grossenbacher-Mansuy, R. Häberli, A. Bill, R.W. Scholz, and M. Welti (eds.). 2001. Transdisciplinarity: Joint problem solving among science, technology, and society. An effective way for managing complexity. Basel: Birkhäuser.Google Scholar
  40. Walter, A.I., S. Helgenberger, A. Wiek, and R.W. Scholz. 2007. Measuring societal effects of transdisciplinary research projects: Design and application of an evaluation method. Evaluation and Program Planning 30: 325–338. doi: 10.1016/j.evalprogplan.2007.08.002.CrossRefGoogle Scholar
  41. Westley, F., P. Olsson, C. Folke, T. Homer-Dixon, H. Vredenburg, D. Loorbach, J. Thompson, M. Nilsson, et al. 2011. Tipping toward sustainability: Emerging pathways of transformation. AMBIO 40: 762–780. doi: 10.1007/s13280-011-0186-9.CrossRefGoogle Scholar
  42. Wiek, A., B. Ness, P. Schweizer-Ries, F.S. Brand, and F. Farioli. 2012. From complex systems analysis to transformational change: A comparative appraisal of sustainability science projects. Sustainability Science 7: 5–24. doi: 10.1007/s11625-011-0148-y.CrossRefGoogle Scholar
  43. Wiek, A., L. Withycombe, and C.L. Redman. 2011. Key competencies in sustainability: A reference framework for academic program development. Sustainability Science 1–16. doi: 10.1007/s11625-011-0132-6.

Copyright information

© Royal Swedish Academy of Sciences 2012

Authors and Affiliations

  • Roman Seidl
    • 1
  • Fridolin Simon Brand
    • 2
  • Michael Stauffacher
    • 1
  • Pius Krütli
    • 1
  • Quang Bao Le
    • 1
  • Andy Spörri
    • 1
  • Grégoire Meylan
    • 1
  • Corinne Moser
    • 1
  • Monica Berger González
    • 1
  • Roland Werner Scholz
    • 3
  1. 1.Institute for Environmental Decisions (IED)ETH ZurichZurichSwitzerland
  2. 2.Südzucker AG MannheimGermany
  3. 3.ZurichSwitzerland

Personalised recommendations