, Volume 42, Issue 5, pp 577–586 | Cite as

Modeling Past and Future Acidification of Swedish Lakes

  • Filip MoldanEmail author
  • Bernard J. Cosby
  • Richard F. Wright


Decades of acid deposition have caused acidification of lakes in Sweden. Here we use data for 3000 lakes to run the acidification model MAGIC and estimate historical and future acidification. The results indicate that beginning in about 1920 a progressively larger number of lakes in Sweden fell into the category of “not naturally acidified” (∆pH > 0.4). The peak in acidification was reached about 1985; since then many lakes have recovered in response to lower levels of acid deposition. Further recovery from acidification will occur by the year 2030 given implementation of agreed legislation for emissions of sulphur (S) and nitrogen (N) in Europe. But the number of catchments with soils being depleted in base cations will increase slightly. MAGIC-reconstructed history of acidification of lakes in Sweden agrees well with information on fish populations. Future acidification of Swedish lakes can be influenced by climate change as well as changes in forest harvest practices.


Sweden Lake Acidification Model 



This work is based on re-calibration of MAGIC to Swedish lakes for revision of the “MAGIC-bibliotek” with contribution from Climate Change and Environmental Objectives (CLEO) program, both financed by the Swedish Environmental Protection Agency. We thank Jens Fölster and colleagues at SLU for help with the data for specific runoff, land use, lake chemistry and soil chemistry. We thank Maximilian Posch of the Coordination Centre for Effects (CCE) for assistance with deposition data. We thank Karin Hansen, IVL, for working up the estimates of past, present, and future forest harvest practices.


  1. Aber, J.D., K.J. Nadelhoffer, P. Steudler, and J. Melillo. 1989. Nitrogen saturation in northern forest ecosystems. BioScience 39: 378–386.CrossRefGoogle Scholar
  2. Aherne, J., M. Posch, M. Forsius, J. Vuorenmaa, P. Tamminen, M. Holmberg, and M. Johansson. 2008. Modelling the hydro-geochemistry of acid-sensitive catchments in Finland under atmospheric deposition and biomass harvesting scenarios. Biogeochemistry 88: 233–256.CrossRefGoogle Scholar
  3. Aherne, J., M. Posch, M. Forsius, A. Lehtonen, and K. Härkönen. 2011. Impacts of forest biomass removal on soil nutrient status under climate change: A catchment-based modelling study for Finland. Biogeochemistry 107: 471–488.CrossRefGoogle Scholar
  4. Akselsson, C., T. Zetterberg, S. Belyazid, O. Westling, S. Hellsten, F. Moldan, and V. Kronnäs. 2007. Bara naturlig försurning. Bilaga 8. Underlagsrapport: Skogsbrukets försurningsbidrag. Bara naturlig försurning. Bilagor till Naturvårdsverkets rapport nr 5766. Naturvårdsverket, Stockholm. (in Swedish).Google Scholar
  5. Akselsson, C., O. Westling, H. Sverdrup, J. Holmqvist, G. Thelin, and E. Uggla. 2006. Impact of harvest intensity on long-term base cation budgets in Swedish forest soils. Water, Air, & Soil Pollution: Focus 7: 201–210.Google Scholar
  6. Almer, B., W. Dickson, C. Ekström, E. Hornström, and U. Miller. 1974. Effects of acidification of Swedish lakes. AMBIO 3: 30–36.Google Scholar
  7. Baker, J.P., and C.L. Schofield. 1980. Aluminium toxicity to fish as related to acid precipitation and Adirondack surface water quality. In Ecological impact of acid precipitation, ed. D. Drabløs, and A. Tollan, 292–293. Ås, Norway: SNSF-project.Google Scholar
  8. Bulger, A.J., L. Lien, B.J. Cosby, and A. Henriksen. 1993. Brown trout (Salmo trutta) status and chemistry from the Norwegian thousand lake survey: Statistical analysis. Canadian Journal of Fisheries and Aquatic Sciences 50: 575–585.CrossRefGoogle Scholar
  9. Cosby, B.J., G.M. Hornberger, J.N. Galloway, and R.F. Wright. 1985a. Modelling the effects of acid deposition: Assessment of a lumped parameter model of soil water and streamwater chemistry. Water Resources Research 21: 51–63.CrossRefGoogle Scholar
  10. Cosby, B.J., R.F. Wright, G.M. Hornberger, and J.N. Galloway. 1985b. Modelling the effects of acid deposition: Estimation of long term water quality responses in a small forested catchment. Water Resources Research 21: 1591–1601.CrossRefGoogle Scholar
  11. Cosby, B.J., R.C. Ferrier, A. Jenkins, and R.F. Wright. 2001. Modelling the effects of acid deposition: Refinements, adjustments and inclusion of nitrogen dynamics in the MAGIC model. Hydrology and Earth System Sciences 5: 499–518.CrossRefGoogle Scholar
  12. Fölster, J., C. Andren, K. Bishop, I. Buffam, N. Cory, W. Goedkoop, K. Holmgren, R. Johnson, H. Laudon, and A. Wilander. 2007. A novel environmental quality criterion for acidification in Swedish lakes—An application of studies on the relationship between biota and water chemistry. Water, Air, & Soil Pollution: Focus 7: 331–338.CrossRefGoogle Scholar
  13. Forsius, M., F. Moldan, T. Larssen, M. Posch, J. Aherne, E. Lund, R.F. Wright, and B.J. Cosby. National-scale dynamic model applications for Nordic countries, Chapter 17. In Critical loads for nitrogen, acidity and metals for terrestrial and aquatic ecosystems, ed. W. de Vries and J.-P. Hettelingh. Berlin: Springer (in preparation).Google Scholar
  14. Henriksen, A., and M. Posch. 2001. Steady-state models for calculating critical loads of acidity for surface waters. Water, Air, & Soil Pollution: Focus 1: 375–398.CrossRefGoogle Scholar
  15. Hesthagen, T., P. Fiske, and B.L. Skjelkvale. 2008. Critical limits for acid neutralizing capacity of brown trout (Salmo trutta) in Norwegian lakes differing in organic carbon concentrations. Aquatic Ecology 42: 307–316.CrossRefGoogle Scholar
  16. Holmgren, K., and I. Buffam. 2005. Critical values of different acidity indices—As shown by fish communities in Swedish lakes. Verhandlungen der Internationalen Vereinigung fur Theoretische und Angewandte Limnologie 29: 654–660.Google Scholar
  17. Hruška, J., S. Kohler, H. Laudon, and K. Bishop. 2003. Is a universal model of organic acidity possible: Comparison of the acid/base properties of dissolved organic carbon in the boreal and temperate zones. Environmental Science and Technology 37: 1726–1730.CrossRefGoogle Scholar
  18. Larssen, T., B.J. Cosby, E. Lund, and R.F. Wright. 2010. Modeling future acidification and fish populations in Norwegian surface waters. Environmental Science and Technology 44: 5345–5351.CrossRefGoogle Scholar
  19. Lien, L., G.G. Raddum, A. Fjellheim, and A. Henriksen. 1996. A critical limit for acid neutralizing capacity in Norwegian surface waters, based on new analyses of fish and invertebrate responses. Science of the Total Environment 177: 173–193.CrossRefGoogle Scholar
  20. Lydersen, E., T. Larssen, and E. Fjeld. 2004. The influence of total organic carbon (TOC) on the relationship between acid neutralizing capacity (ANC) and fish status in Norwegian lakes. Science of the Total Environment 362: 63–69.CrossRefGoogle Scholar
  21. Moldan, F., B.J. Cosby, and R.F. Wright. 2009. Modelling the role of nitrogen in acidification of Swedish lakes: Future scenarios of acid deposition, climate change and forestry practices. Report B1888. IVL Swedish Environmental Research Institute Ltd., Gothenburg, Sweden.Google Scholar
  22. Moldan, F., and R.F. Wright. 2011. Nitrogen leaching and acidification during 19 years of NH4NO3 additions to a coniferous-forested catchment at Gårdsjön, Sweden (NITREX). Environmental Pollution 159: 431–440.CrossRefGoogle Scholar
  23. Moldan, F., V. Kronnäs, A. Wilander, E. Karltun, and B.J. Cosby. 2004. Modelling acidification and recovery of Swedish lakes. Water, Air, & Soil Pollution: Focus 4: 139–160.CrossRefGoogle Scholar
  24. Schindler, D.W. 1988. Effects of acid rain on freshwater ecosystems. Science 239: 149–157.CrossRefGoogle Scholar
  25. Schöpp, W., M. Posch, S. Mylona, and M. Johansson. 2003. Long-term development of acid deposition (1880–2030) in sensitive freshwater regions in Europe. Hydrology and Earth System Sciences 7: 436–446.CrossRefGoogle Scholar
  26. Skjelkvåle, B.L., J. Mannio, A. Wilander, and T. Andersen. 2001. Recovery from acidification of lakes in Finland, Norway and Sweden 1990–1999. Hydrology and Earth System Sciences 5: 327–338.CrossRefGoogle Scholar
  27. Stendahl, J. 2007. Bilaga 2. Underlagsrapport: Utvärdering av miljötillståndet och trender i skogsmarken. Bara Naturlig Försurning. Bilagor till Naturvårdsverkets rapport nr 5766. Naturvårdsverket, Stockholm (in Swedish).Google Scholar
  28. Svarén, A. 1996. Jordmånsbildning och markkemisk övervakning i fjällområdet – en pilotstudie. Examensarbete 1995/96, Institutionen för skoglig marklära SLU, Uppsala. 48 pp.Google Scholar
  29. Tamm, C.O. 1991. Nitrogen in terrestrial ecosystems. Berlin: Springer.CrossRefGoogle Scholar
  30. Tammi, J., M. Appelberg, U. Beier, T. Hesthagen, A. Lappalainen, and M. Rask. 2003. Fish status survey of Nordic lakes: Effects of acidification, eutrophication and stocking activity on present fish species composition. AMBIO 32: 98–105.Google Scholar
  31. UNECE. 2012. Convention on Long-range Transboundary Air Pollution
  32. Wilander, A., and J. Fölster. 2007. Sjöinventeringen 2005. En synoptisk vattenkemisk undersökning av Sveriges sjöar. Rapport 2007:16. Institutionen för miljöanalys, Sveriges Lantbruksuniversitet, Uppsala. (in Swedish, English summary).Google Scholar
  33. Wright, R.F., and N. van Breemen. 1995. The NITREX project: An introduction. Forest Ecology and Management 71: 1–5.CrossRefGoogle Scholar
  34. Wright, R.F., T. Larssen, L. Camarero, B.J. Cosby, R.C. Ferrier, R.C. Helliwell, M. Forsius, A. Jenkins, et al. 2005. Recovery of acidified European surface waters. Environmental Science and Technology 39: 64A–72A.Google Scholar
  35. Wright, R.F., J. Aherne, K. Bishop, L. Camarero, B.J. Cosby, M. Erlandsson, C.D. Evans, M. Forsius, et al. 2006. Modelling the effect of climate change on recovery of acidified freshwaters: Relative sensitivity of individual processes in the MAGIC model. Science of the Total Environment 365: 154–166.Google Scholar

Copyright information

© Royal Swedish Academy of Sciences 2012

Authors and Affiliations

  • Filip Moldan
    • 1
    Email author
  • Bernard J. Cosby
    • 2
  • Richard F. Wright
    • 3
  1. 1.IVL Swedish Environmental Research InstituteGothenburgSweden
  2. 2.Department of Environmental SciencesUniversity of VirginiaCharlottesvilleUSA
  3. 3.Norwegian Institute for Water ResearchOsloNorway

Personalised recommendations