Skip to main content

Advertisement

Log in

The Energy for Growing and Maintaining Cities

  • Report
  • Published:
AMBIO Aims and scope Submit manuscript

Abstract

Herein we develop a means to differentiate between the energy required to expand and the energy required to maintain the economies of cities. A nonlinear model is tested against historical data for two cities, Hong Kong and Singapore. A robust fit is obtained for Hong Kong, with energy for maintenance close to that for growth, while Singapore, with a weaker fit, is growth dominated. The findings suggest that decreases in either of the per unit maintenance or growth demands can simultaneously cause gross domestic product (GDP) and total energy use to increase. Furthermore, increasing maintenance demands can significantly limit growth in energy demand and GDP. Thus, the low maintenance demands for Hong Kong, and especially Singapore, imply that, all other things being equal, GDP and energy use of these cities will continue to grow, though Singapore’s higher energy use for growth means it will require more energy than Hong Kong.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

References

  • Abou-Abdo, T., N.R. Davis, J.S. Krones, K.N. Welling, and J.E. Fernandez. 2011. Dynamic modeling of Singapore’s urban resource flows: Historical trends and sustainable scenario development. In IEEE International Symposium on Sustainable Systems and Technology (ISSST), 2011, 1–6. doi:10.1109/ISSST.2011.5936851.

  • Alper, Joseph S., and R.I. Gelb. 1990. Standard errors and confidence intervals in nonlinear regression: Comparison of Monte Carlo and parametric statistics. Journal of Physical Chemistry 94: 4747–4751. doi:10.1021/j100374a068.

    Article  CAS  Google Scholar 

  • Anderson, William P., P.S. Kanaroglou, and E.J. Miller. 1996. Urban form, energy and the environment: A review of issues, evidence and policy. Urban Studies 33: 7–35. doi:10.1080/00420989650012095.

    Article  Google Scholar 

  • Ayres, Robert U., and B. Warr. 2005. Accounting for growth: The role of physical work. Structural Change and Economic Dynamics 16: 181–209. doi:10.1016/j.strueco.2003.10.003.

    Article  Google Scholar 

  • Berry, Brian Joe Lobley. 1991. Long-wave rhythms in economic development and political behavior. Baltimore: Johns Hopkins University Press.

    Google Scholar 

  • Bertoldi, P., and B. Atanasiu. 2007. Electricity consumption and efficiency trends in the enlarged European Union. European Commission, Directorate-General Research Centre, Institute for Environment and Sustainability. Retrieved July 12, 2012, from http://qualenergia.it/sites/default/files/articolo-doc/Electricity%20Consumption%20in%20UE.pdf.

  • Bettencourt, L.M.A., J. Lobo, D. Helbing, C. Kuhnert, and G.B. West. 2007. Growth, innovation, scaling, and the pace of life in cities. Proceedings of the National Academy of Sciences of the United States of America 104: 7301–7306. doi:10.1073/pnas.0610172104.

    Article  CAS  Google Scholar 

  • Chaisson, Eric J. 2008. Long-term global heating from energy usage. EOS 89: 253–254. doi:10.1029/2008EO280001.

    Article  Google Scholar 

  • Daly, Herman E. 2010. The steady-state economy. In Environmental ethics: The Big questions, ed. D.R. Keller. Malden: Wiley.

    Google Scholar 

  • EPA. 2008. Energy efficiency trends in residential & commercial buildings. Retrieved July 12, 2012, from http://apps1.eere.energy.gov/buildings/publications/pdfs/corporate/bt_stateindustry.pdf.

  • Fath, B.D., S.E. Jørgensen, B.C. Patten, and M. Straškraba. 2004. Ecosystem growth and development. Biosystems 77: 213–228. doi:10.1016/j.biosystems.2004.06.001.

    Article  Google Scholar 

  • Gleick, James. 1988. Chaos. New York: Penguin Books.

    Google Scholar 

  • Goudsblom, Johan. 1992. Fire and civilization. Toronto: Allen Lane, Penguin Books.

    Google Scholar 

  • Haberl, H., F. Krausmann, and S. Gingrich. 2006. Ecological embeddedness of the economy: A socioecological perspective on humanity’s economic activities 1700–2000. Economic and Political Weekly XLI: 4896–4904.

    Google Scholar 

  • Harvey, D. 2010. Energy and the new reality: Facing up to climatic change, Volume 1: Energy efficiency and the demand for energy services. London: Earthscan.

    Google Scholar 

  • Heavenrich, R.M. 2005. Light-duty automotive technology and fuel economy trends: 1975 through 2005. EPA. Retrieved July 12, 2012, from http://www.nytimes.com/packages/pdf/business/20050728_EPA/Trends-%203_3_20051.pdf.

  • Hillman, T., and A. Ramaswami. 2010. Greenhouse gas emission footprints and energy use benchmarks for eight U.S. Cities. Environmental Science and Technology 44: 1902–1910. doi:10.1021/es9024194.

    Article  CAS  Google Scholar 

  • Kennedy, C.A. 2011. The evolution of great world cities: Urban wealth and economic growth. Toronto: University of Toronto Press.

    Google Scholar 

  • Kennedy, C.A., J.K. Steinberger, B. Gasson, Y. Hansen, T. Hillman, M. Havránek, D. Pataki, A. Phdungsilp, et al. 2009. Greenhouse gas emissions from global cities. Environmental Science and Technology 43: 7297–7302. doi:10.1021/es900213p.

    Google Scholar 

  • Koomey, Jonathan G., S. Berard, M. Sanchez, and H. Wong. 2011. Implications of historical trends in the electrical efficiency of computing. IEEE Annals of the History of Computing 33: 46–54.

    Article  Google Scholar 

  • Kühnert, Christian, D. Helbing, and G.B. West. 2006. Scaling laws in urban supply networks. Physica A: Statistical Mechanics and its Applications 363: 96–103. doi:10.1016/j.physa.2006.01.058.

    Article  Google Scholar 

  • Kurzweil, Ray. 2005. The singularity is near: When humans transcend biology. New York: Penguin.

    Google Scholar 

  • Lambert, Ronald J.W., I. Mytilinaios, L. Maitland, and A.M. Brown. 2012. Monte Carlo simulation of parameter confidence intervals for non-linear regression analysis of biological data using Microsoft Excel. Computer Methods and Programs in Biomedicine 107: 155–163. doi:10.1016/j.cmpb.2011.05.009.

    Article  Google Scholar 

  • Mage, David, G. Ozolins, P. Peterson, A. Webster, R. Orthofer, V. Vandeweerd, and M. Gwynne. 1996. Urban air pollution in megacities of the world. Atmospheric Environment 30: 681–686. doi:10.1016/1352-2310(95)00219-7.

    Article  CAS  Google Scholar 

  • May, Robert M. 1974. Biological populations with nonoverlapping generations: Stable points, stable cycles, and chaos. Science 186: 645–647.

    Article  CAS  Google Scholar 

  • Nakicenovic, N. 1988. Dynamics and replacement of US transport infrastructures. In Cities and their vital systems: Infrastructure past, present and future, ed. J.H. Ausubel, and R. Herman, 175–221. Washington, DC: National Academy Press.

    Google Scholar 

  • Newman, P.W.G., and J.R. Kenworthy. 1999. Sustainability and cities: Overcoming automobile dependence. Washington, DC: Island Press.

    Google Scholar 

  • Nicolis, G., and I. Prigogine. 1977. Self-organization in nonequilibrium systems: From dissipative structures to order through fluctuations. New York: Wiley.

    Google Scholar 

  • Odum, Eugene P. 1969. The strategy of ecosystem development. Science 164: 262–270. doi:10.1126/science.164.3877.262.

    Article  CAS  Google Scholar 

  • Parrish, David D., and T. Zhu. 2009. Clean air for megacities. Science 326: 674–675. doi:10.1126/science.1176064.

    Article  CAS  Google Scholar 

  • Richards, F.J. 1959. A flexible growth function for empirical use. Journal of Experimental Botany 10: 290–301. doi:10.1093/jxb/10.2.290.

    Article  Google Scholar 

  • Rossokha, K. 2009. BC Hydro Strategy to advance local government energy efficiency policies. BC Hydro. Retrieved Sept 21, 2011, from http://www.bchydro.com/etc/medialib/internet/documents/power_smart/sustainable_communities/advancing_local_govt_energy_efficiency_policies.Par.0001.File.advancing_local_govt_energy_efficiency_policies.pdf.

  • Rotmans, Jan, and D. Loorbach. 2009. Complexity and transition management. Journal of Industrial Ecology 13: 184–196. doi:10.1111/j.1530-9290.2009.00116.x.

    Article  Google Scholar 

  • Schneider, E.D., and J.J. Kay. 1994. Life as a manifestation of the second law of thermodynamics. Mathematical and Computer Modelling 19: 25–48.

    Article  Google Scholar 

  • Sieferle, Rolf Peter. 2001. The subterranean forest. Cambridge: The White Horse Press.

    Google Scholar 

  • Simon, Julian Lincoln. 1998. The ultimate resource 2. Princeton: Princeton University Press.

    Google Scholar 

  • Smil, Vaclav. 2008. Energy in nature and society: General energetics of complex systems. Cambridge: MIT Press.

    Google Scholar 

  • Spier, Fred. 2011. Big history and the future of humanity. Malden: Wiley.

    Google Scholar 

  • Steinberger, J.K., and Fridolin Krausmann. 2011. Material and energy productivity. Environmental Science and Technology 45: 1169–1176. doi:10.1021/es1028537.

    Article  CAS  Google Scholar 

  • Steinberger, J.K., and J.T. Roberts. 2010. From constraint to sufficiency: The decoupling of energy and carbon from human needs, 1975–2005. Ecological Economics 7: 425–433. doi:10.1016/j.ecolecon.2010.09.014.

    Article  Google Scholar 

  • Stockholm Memorandum. 2011. The Stockholm Memorandum. AMBIO 40: 781–785. doi:10.1007/s13280-011-0187-8.

  • Strogatz, Steven H. 2000. Nonlinear dynamics and chaos. Cambridge: Perseus Books Publishing, LLC.

    Google Scholar 

  • Suri, Vivek, and D. Chapman. 1998. Economic growth, trade and energy: Implications for the environmental Kuznets curve. Ecological Economics 25: 195–208. doi:10.1016/S0921-8009(97)00180-8.

    Article  Google Scholar 

  • Victor, Peter A. 2008. Managing without growth: Slower by design, not disaster. Northampton: Edward Elgar Publishing.

    Google Scholar 

  • von Bertalanffy, Ludwig. 1957. Quantitative laws in metabolism and growth. The Quarterly Review of Biology 32: 217–231.

    Article  Google Scholar 

  • Warren-Rhodes, Kimberley, and A. Koenig. 2001. Escalating trends in the urban metabolism of Hong Kong: 1971–1997. AMBIO 30: 429–438. doi:10.1579/0044-7447-30.7.429.

    CAS  Google Scholar 

  • Weisberg, Sanford. 2005. Applied linear regression. Hoboken: Wiley.

    Book  Google Scholar 

  • Westley, Frances, P. Olsson, C. Folke, T. Homer-Dixon, H. Vredenburg, D. Loorbach, J. Thompson, et al. 2011. Tipping toward sustainability: Emerging pathways of transformation. AMBIO 40: 762–780. doi:10.1007/s13280-011-0186-9.

    Article  Google Scholar 

  • Young, A. 1992. A tale of two cities: Factor accumulation and technical change in Hong Kong and Singapore. In NBER Macroeconomics Annual 1992, vol. 7, ed. O.J. Blanchard, and S. Fi, 13–64. Cambridge: MIT Press.

    Google Scholar 

Download references

Acknowledgments

This work has been graciously supported in part by the Natural Sciences and Engineering Research Council of Canada and the Ontario Ministry of Training, Colleges and Universities.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David N. Bristow.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bristow, D.N., Kennedy, C.A. The Energy for Growing and Maintaining Cities. AMBIO 42, 41–51 (2013). https://doi.org/10.1007/s13280-012-0350-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13280-012-0350-x

Keywords

Navigation