, Volume 41, Issue 8, pp 841–850 | Cite as

Options for Change in the Australian Energy Profile

  • Stephen F. Lincoln
Review Paper


Climate change is occurring largely as a result of increasing CO2 emissions whose reduction requires greater efficiency in energy production and use and diversification of energy sources away from fossil fuels. These issues were central to the United Nation climate change discussions in Durban in December 2011 where it was agreed that a legally binding agreement to decrease greenhouse gas emissions should be reached by 2015. In the interim, nations were left with the agreement reached at the analogous 2009 Copenhagen and 2010 Cancun meetings that atmospheric CO2 levels should be constrained to limit the global temperature rise to 2 °C. However, the route to this objective was largely left to individual nations to decide. It is within this context that options for reduction in the 95 % fossil fuel dependency and high CO2 emissivity of the Australian energy profile using current technologies are considered. It is shown that electricity generation in particular presents significant options for changing to a less fossil fuel dependent and CO2 emissive energy profile.


Energy profile CO2 emissions Electricity Efficiency Fossil fuels Renewable energy Nuclear electricity 


  1. Allen, M.R., D.J. Frame, C. Huntingford, C.D. Jones, J.A. Lowe, M. Meinshausen, and N. Meinshausen. 2009. Warming caused by cumulative carbon emissions towards the trillionth tonne. Nature 455: 1163–1166. doi: 10.1038/nature08019.CrossRefGoogle Scholar
  2. AG (Australian Government). 2008. Australia’s low pollution future: The economics of climate change mitigation. Accessed 20 April 2012.
  3. AG (Australian Government). 2008–09. Australian energy supply and disposal, 2008–09. Accessed 2 Feb 2012.
  4. AG (Australian Government). 2010a. Australia’s emissions projections 2010. Accessed 12 April 2012.
  5. AG (Australian Government). 2010b. National greenhouse accounts (NGA) factors. Accessed 1 Feb 2012.
  6. AG (Australian Government). 2010c. National greenhouse gas inventory: accounting for the Kyoto target. December Quarter 2010. Accessed 12 Feb 2012.
  7. AG (Australian Government). 2010d. Australia to 2050: Future challenges. Accessed 9 April 2012.
  8. AG (Australian Government). 2011a. Securing a clean energy future. The Australian government’s climate change plan. Accessed 23 March 2012.
  9. AG (Australian Government). 2011b. Energy in Australia 2011. Accessed 24 May 2011.
  10. Beér, J.M. 2007. High efficiency power generation: The environmental role. Progress in Energy and Combustion Science 33: 107–134. doi: 10.1016/j.pecs.2006.08.002.CrossRefGoogle Scholar
  11. Bhown, S.A., and B.C. Freeman. 2011. Analysis and status of post-combustion carbon dioxide capture technologies. Environmental Science and Technology 4: 8624–8632. doi: 10.1021/es104291d.CrossRefGoogle Scholar
  12. Brohan, P., J.J. Kennedy, and S.F.B. Kennedy. 2006. Uncertainty estimates in regional and global observed temperature changes: A new set from 1850. Journal of Geophysical Research 111: D12106. doi: 10.1029/2005JD006548.CrossRefGoogle Scholar
  13. Bugge, J., S. Kjær, and R. Blum. 2006. High-efficiency coal-fired power plants development and perspectives. Energy 31: 1437–1445. doi: 10.1016/ Scholar
  14. Buhre, B.J.P., L.K. Elliott, C.D. Sheng, R.P. Gupta, and T.F. Wall. 2005. Oxy-fuel combustion technology for coal-fired power generation. Progress in Energy and Combustion Science 31: 283–307. doi: 10.1016/j.pecs.2005.07.001.CrossRefGoogle Scholar
  15. Carcasci, C., and B. Facchini. 2000. Comparison between two gas turbine solutions to increase combined power plant efficiency. Energy Conversion and Management 41: 757–773. doi: 10.1016/50196-8904(99)00150-8.CrossRefGoogle Scholar
  16. Cook, T.R., D.K. Dogutan, S.Y. Reece, Y. Surendranath, T.S. Teets, and D.G. Nocera. 2010. Solar energy supply and storage for the legacy and nonlegacy worlds. Chemical Reviews 110: 6474–6502. doi: 10.1021/cr100246c.CrossRefGoogle Scholar
  17. Cullen, J.M., J.M. Atwood, and E.H. Borgstein. 2011. Reducing energy demand: What are the practical limits? Environmental Science and Technology 45: 1711–1718. doi: 10.1021/es102641n.CrossRefGoogle Scholar
  18. Crutzen, P.J. 2002. Geology of mankind. Nature 415: 23. doi: 10.1038/415023a.CrossRefGoogle Scholar
  19. Editorial. 2009. After Copenhagen. Nature 462: 957. doi: 10.1038/462957b.
  20. ECF (European Climate Foundation). 2010. Roadmap 2050: A practical guide to a prosperous low-carbon Europe. Technical analysis. Accessed 27 March 2012.
  21. Fredga, K., and K.-G. Mäler. 2010. Life cycle analyses and resource assessments. AMBIO 39: 36–41. doi: 10.1007/s13280-010-0063y.CrossRefGoogle Scholar
  22. Fredholm, B.B., and B. Nordén. 2010. Fuels for transportation. AMBIO 39: 31–35. doi: 10.1007/s13280-010-0062-z.CrossRefGoogle Scholar
  23. Garnaut, R. 2011. The Garnaut review 2011: Australia in the global response to climate change. Accessed 2 July 2011.
  24. Greenblatt, J., M. Wei, C. Yang, B. Richter, B. Hanegan, and H. Youngs, 2011. California’s energy future—the view to 2050. Accessed 19 March 2012.
  25. Hansen, J., M. Sato, M. Rudy, K. Lo, D.W. Lea, and M. Medina-Elizade. 2006. Global temperature change. Proceedings of the National Sciences Academy of the United States of America 103: 14188–14293. doi: 10.1073/pnas.0606291103.CrossRefGoogle Scholar
  26. Hansson, A., and M. Bryngelsson. 2009. Expert opinions on carbon dioxide capture and storage—a framing of uncertainties and possibilities. Energy Policy 37: 2273–2282. doi: 10.1016/j.enpol.2009.02.018.CrossRefGoogle Scholar
  27. Haszeldine, R.S. 2009. Carbon capture and storage: How green can black be? Science 325: 1647–1651. doi: 10.1126/science.1172246.CrossRefGoogle Scholar
  28. Hayward, J.A., P.W. Graham, and P.K. Campbell, 2011. Projections of the future costs of electricity generation technologies. Accessed 20 March 2012.
  29. Hedberg, D., S. Kullander, and H. Frank. 2010. The world needs a new energy paradigm. AMBIO 39: 1–10. doi: 10.1007/s13280-010-0057-9.CrossRefGoogle Scholar
  30. Hoffert, M.I., K. Caldeira, G. Benford, D.R. Criswell, C. Green, H. Herzog, A.K. Jain, H.S. Kheshgi, et al. 2002. Advanced technology paths to global climate stability: Energy for a greenhouse planet. Science 298: 981–987. doi: 10.1126/science.1072357.CrossRefGoogle Scholar
  31. IAEA (International Atomic Energy Agency). 2012. Power reactor information system; nuclear share of electricity generation in 2010. Accessed 2 April 2012.
  32. IEA (International Energy Agency). 2010. Key world energy statistics 2010. Accessed 24 May 2011.
  33. IPCC (Intergovernmental Panel on Climate Change). 2005. Carbon Dioxide Capture and Storage, eds. Metz B, O. Davidson, H. de Coninck, M. Loos, and L. Meyer. Cambridge: Cambridge University Press. Accessed 14 April 2012.
  34. IPCC (Intergovernmental Panel on Climate Change). 2007. Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change, eds. Solomon, D., D. Qin, M. Manning, M. Marguis, K. Averyt, M.M.B. Tignor, H.L. Miller, and Z. Chen. Cambridge: Cambridge University Press. Accessed 14 Aug 2011.
  35. Jacobs, M. 2012. Deadline 2015. Nature 481: 137–138. doi: 10.1038/481137a.CrossRefGoogle Scholar
  36. Jacobson, M.Z. 2009. Review of solutions to global warming, air pollution, and energy security. Energy & Environmental Science 2: 148–173. doi: 10.1039/B809990C.CrossRefGoogle Scholar
  37. Lincoln, S.F. 2005. Fossil fuels in the 21st century. AMBIO 34: 621–627. doi: 10.1579/0044-7447-34.8.621.Google Scholar
  38. Lincoln, S.F. 2006. Challenged Earth. An Overview of Humanity’s Stewardship of Earth. London: Imperial College Press.Google Scholar
  39. Lincoln, S.F. 2009. Towards a fossil fuel free future. In Opportunities Beyond Carbon: Looking Forward to a Sustainable World, ed. J. O’Brien, 24. Melbourne: Melbourne University Press.Google Scholar
  40. LLNL (Lawrence Livermore National Laboratory). 2008. Estimated US energy use in 2008. Accessed 10 July 2011.
  41. Matthews, J.D., N.P. Gillett, P.A. Stott, and K. Zickfeld. 2009. The proportionality of global warming to cumulative carbon emissions. Nature 459: 829–832. doi: 10.1038/nature08047.CrossRefGoogle Scholar
  42. Meinshausen, M., N. Meinshausen, W. Hare, S.C.B. Raper, K. Frieler, R. Knutti, D.J. Frame, and M.R. Allen. 2009. Greenhouse-gas emission targets for limiting global warming to 2°C. Nature 458: 1158–1162. doi: 10.1038/nature08017.CrossRefGoogle Scholar
  43. Murray, J., and D. King. 2012. Oil’s tipping point has passed. Nature 481: 433–435. doi: 10.1038/481433a.CrossRefGoogle Scholar
  44. Pacala, S., and R. Socolow. 2004. Stabilization wedges: Solving the climate problem for the next 50 years with current technologies. Science 305: 968–971. doi: 10.1126/science.1100103.CrossRefGoogle Scholar
  45. Quadrelli, R., and S. Petersen. 2007. The energy-climate challenge: Recent trends in CO2 emissions from fuel combustion. Energy Policy 35: 5938–5952. doi: 10.1016/j.enpol.2007.07.001.CrossRefGoogle Scholar
  46. RAE (Royal Academy of Engineering). 2004. The cost of generating electricity. Accessed 17 Jan 2012.
  47. Raupach, M.R., G. Marland, P. Clais, C. Le Quéré, J.G. Canadell, G. Klepper, and C.B. Field. 2007. Global and regional drivers of accelerating CO2 emissions. Proceedings of the National Sciences Academy of the United States of America 104: 10288. doi: 10.1073/pnas.0700609104.CrossRefGoogle Scholar
  48. Rockström, J., W. Steffen, K. Noone, Å. Persson, F.S. Chapin, E.F. Lambin, T.M. Lenton, M. Scheffer, et al. 2009. A safe operating space for humanity. Nature 461: 472–475. doi: 10.1038/461472a.CrossRefGoogle Scholar
  49. Service, R.F. 2004. The carbon conundrum. Science 305: 962–963. doi: 10.1126/science.305.5686.962.CrossRefGoogle Scholar
  50. Solomon, S., G.-K. Plattner, R. Knutti, and P. Friedlingstein. 2009. Irreversible climate change due to carbon dioxide emissions. Proceedings of the National Sciences Academy of the United States of America 106: 1704–1709. doi: 10.1126/science.305.5686.962.CrossRefGoogle Scholar
  51. Steffen, W. 2011. The critical decade: climate science, risks, responses. Accessed 2 July 2011.
  52. Steffen, W., A. Sanderson, P.D. Tyson, J. Jäger, P.A. Matson, B. Moore, F. Oldfield, K. Richardson, et al. 2004. Global change and earth systems: A planet under pressure. Berlin: Springer.Google Scholar
  53. Steffen, W., P.J. Crutzen, and J.R. McNeill. 2007. The anthropocene: Are humans now overwhelming the great forces of Nature? AMBIO 36: 614–621. doi: 10.1579/0044-7447(2007)36[614:TAAHNO]2.0.CO:2.CrossRefGoogle Scholar
  54. Steffen, W., A. Persson, L. Deutsch, J. Zalasiewicz, M. Williams, K. Richardson, C. Crumley, P. Crutzen, et al. 2011. The anthropocene: From global change to planetary stewardship. AMBIO 40: 739–761. doi: 10.1007/s13280-011-0185-x.CrossRefGoogle Scholar
  55. Syed A., and K. Penney. 2011. Australian energy projections to 2034–35. Accessed 20 March 2012.
  56. Tollefsen, J. 2009. World looks ahead post-Copenhagen. Nature 462: 966. doi: 10.1038/462966a.CrossRefGoogle Scholar
  57. Tollefson, J. 2010. Last-minute deal saves climate talks. Nature 468: 875. doi: 10.1038/468875a.CrossRefGoogle Scholar
  58. Tollefson, J. 2011. Durban maps path to climate treaty. Nature 480: 299–300. doi: 10.1038/480299a.CrossRefGoogle Scholar
  59. United Nations. 2011. The world population prospects: The 2010 revision. Accessed 5 Aug 2011.
  60. UKMO (United Kingdom Meteorological Office). 2011. 2010—A near record year. Accessed 27 Jan 2011.
  61. Williams, J.H., A. DeBenedictus, R. Ghanadan, A. Mahone, J. Moore, W.R. Morrow, S. Price, and M.S. Torn. 2012. The technology path to deep greenhouse gas emissions cuts by 2050: The pivotal role of electricity. Science 335: 53–59. doi: 10.1126/science.1208365.CrossRefGoogle Scholar

Copyright information

© Royal Swedish Academy of Sciences 2012

Authors and Affiliations

  1. 1.School of Chemistry and PhysicsUniversity of AdelaideAdelaideAustralia

Personalised recommendations