AMBIO

, Volume 41, Supplement 3, pp 187–196 | Cite as

Changes Versus Homeostasis in Alpine and Sub-Alpine Vegetation Over Three Decades in the Sub-Arctic

  • Henrik Hedenås
  • Bengt Å. Carlsson
  • Urban Emanuelsson
  • Alistair D. Headley
  • Christer Jonasson
  • Brita M. Svensson
  • Terry V. Callaghan
Article

Abstract

Plant species distributions are expected to shift and diversity is expected to decline as a result of global climate change, particularly in the Arctic where climate warming is amplified. We have recorded the changes in richness and abundance of vascular plants at Abisko, sub-Arctic Sweden, by re-sampling five studies consisting of seven datasets; one in the mountain birch forest and six at open sites. The oldest study was initiated in 1977–1979 and the latest in 1992. Total species number increased at all sites except for the birch forest site where richness decreased. We found no general pattern in how composition of vascular plants has changed over time. Three species, Calamagrostis lapponica, Carex vaginata and Salix reticulata, showed an overall increase in cover/frequency, while two Equisetum taxa decreased. Instead, we showed that the magnitude and direction of changes in species richness and composition differ among sites.

Keywords

Ecosystem structure Heaths Meadows Mountain birch forest Plant biodiversity Plant community ecology 

Notes

Acknowledgments

We sincerely thank the staff of the Abisko Scientific Research Station for their support, in particular Philpp Theuringer. We also thank Craig E. Tweedie for valuable comments on an earlier version of the manuscript and two anonymous reviewers for valuable comments. The project was financed by a grant from the Swedish Research Council (Vetenskapsrådet) 327-2007-833 as part of the International project “Retrospective and prospective vegetation change in the Polar Regions: Back to the Future Project (BTF; IPY Project number ID No 512). This work was also partially supported by the FORMAS projects “Climate change, impacts and adaptation in the sub Arctic: a case study from the northern Swedish mountains” (214-2008-188) and “Advanced Simulation of Arctic climate change and impact on Northern regions” (214-2009-389).

Supplementary material

13280_2012_312_MOESM1_ESM.doc (1.8 mb)
Supplementary material 1 (DOC 1797 kb)

References

  1. ACIA. 2005. Arctic Climate Impact Assessment. Cambridge: Cambridge University Press.Google Scholar
  2. Andersson, N.Å., T.V. Callaghan, and P.S. Karlsson. 1996. The Abisko Scientific Research Station. Ecological Bulletins 45: 11–14.Google Scholar
  3. Bernes, C. 1980. Monitor 1980 en presentation av PMK—Programmet för övervakning av miljökvalitet. Stockholm: Naturvårdsverket.Google Scholar
  4. Bhatt, U.S., D.A. Walker, M.K. Raynolds, J.C. Comiso, H.E. Epstein, G. Jia, R. Gens, J.E. Pinzon, et al. 2010. Circumpolar Arctic tundra vegetation change is linked to sea ice decline. Earth Interactions 14: 8. doi: 10.1175/2010EI315.1.CrossRefGoogle Scholar
  5. Bliss, L.C., O.W. Heal, and J.J. Moore (eds.). 1981. Tundra ecosystems: A comparative analysis. Cambridge: Cambridge University Press.Google Scholar
  6. Bokhorst, S.F., J.W. Bjerke, H. Tømmervik, T.V. Callaghan, and G.K. Phoenix. 2009. Winter warming events damage sub-Arctic vegetation: Consistent evidence from an experimental manipulation and a natural event. Journal of Ecology 97: 1408–1415.CrossRefGoogle Scholar
  7. Callaghan, T.V., B.R. Werkman, and R.M.M. Crawford, eds. 2002. Dynamics of the tundra–taiga interface. AMBIO 12: 3–62.Google Scholar
  8. Callaghan, T.V., F. Bergholm, T.R. Christensen, C. Jonasson, U. Kokfelt, and M. Johansson. 2010. A new climate era in the sub-Arctic: Accelerating climate changes and multiple impacts. Geophysical Research Letters 37. doi: 10.1029/2009GL042064
  9. Callaghan, T.V., T.R. Christensen, and E.J. Jantze. 2011a. Plant and vegetation dynamics on Disko Island, West Greenland: Snapshots separated by over 40 years. AMBIO 40: 624–637.CrossRefGoogle Scholar
  10. Callaghan, T.V., C.E. Tweedie, J. Åkerman, C. Andrews, J. Bergstedt, M.G. Butler, T.R. Christensen, D. Cooley, et al. 2011b. Multi-decadal changes in tundra Environments and ecosystems: Synthesis of the International Polar Year Back to the Future Project. AMBIO 40: 705–716.CrossRefGoogle Scholar
  11. Callaghan, T.V., C.E. Tweedie, and P.J. Webber. 2011c. Multi-decadal changes in tundra environments and ecosystems: The International Polar Year-Back to the Future Project (IPY-BTF). AMBIO 40: 555–557.CrossRefGoogle Scholar
  12. Carlsson, B.Å., and T.V. Callaghan. 1991. Positive plant interactions in tundra vegetation and the importance of shelter. Journal of Ecology 79: 973–983.CrossRefGoogle Scholar
  13. Cooper, H., L.V. Hedges, and J.C. Valentine (eds.). 2009. The handbook of research synthesis and meta analysis. New York: Russell Sage Foundation.Google Scholar
  14. Daniëls, F.J.A., and J.G. de Molenaar. 2011. Flora and vegetation of Tasiilaq, Formerly Angmagssalik, Southeast Greenland—A comparison of data from between around 1900 and 2007. AMBIO 40: 650–659.CrossRefGoogle Scholar
  15. DYNTAXA. 2011. Taxonomic Database. ArtDatabanken. SLU, Uppsala (in Swedish). http://lampetra2-1.artdata.slu.se:6767/EXEC/0/1akk2jn0er8v9y1aibbr01ve8hw8. Accessed 22 Nov 2011.
  16. Eckstein, R.L., E. Pereira, A. Milbau, and B.J. Graae. 2011. Predicted changes in vegetation structure affect the susceptibility to invasion of bryophyte-dominated subarctic heath. Annals of Botany 108: 177–183.CrossRefGoogle Scholar
  17. Emanuelsson, U. 1984. Ecological effects of grazing and trampling on mountain vegetation in northern Sweden. PhD Thesis. Sweden: University of Lund.Google Scholar
  18. Grabherr, G., M. Gottfried, and H. Pauli. 1994. Climate effects on mountain plants. Nature 369: 448.CrossRefGoogle Scholar
  19. Hallinger, M., M. Manthey, and M. Wilmking. 2010. Establishing a missing link: Warm summers and winter snow cover promote shrub expansion into alpine tundra in Scandinavia. New Phytologist 186: 890–899.CrossRefGoogle Scholar
  20. Havström, M., T.V. Callaghan, and S. Jonasson. 1993. Differential growth responses of Cassiope tetragona, an arctic dwarf-shrub, to environmental perturbations among three contrasting high- and subarctic sites. Oikos 66: 389–402.CrossRefGoogle Scholar
  21. Headley, A.D. 1986. The comparative autecology of some European species of Lycopodium senso lato. PhD Thesis. Manchester: University of Manchester.Google Scholar
  22. Hedenås, H., H. Olsson, C. Jonasson, J. Bergstedt, U. Dahlberg, and T.V. Callaghan. 2011. Changes in tree growth, biomass and vegetation over a 13-year period in the Swedish sub-Arctic. AMBIO 40: 672–682.CrossRefGoogle Scholar
  23. Hultén, E. 1950. Atlas of the distribution of vascular plants in NW. Europe. AB Kartgeografiska institutet, Esselte AB, Stockholm (in Swedish with English summary).Google Scholar
  24. Klanderud, K. 2004. Climatic change effects on species interactions in an alpine plant community. Journal of Ecology 93: 127–137.CrossRefGoogle Scholar
  25. Klanderud, K., and H.J.B. Birks. 2003. Recent increase in species richness and shifts in altitudinal distributions of Norwegian mountain plants. The Holocene 13: 1–6.CrossRefGoogle Scholar
  26. Kohler, J., O. Brandt, M. Johansson, and T. Callaghan. 2006. A long-term Arctic snow depth record from Abisko, northern Sweden, 1913–2004. Polar Research 25: 91–113.CrossRefGoogle Scholar
  27. Kullman, L. 2002. Rapid recent range-margin rise of tree and shrub species in the Swedish Scandes. Journal of Ecology 90: 68–77.CrossRefGoogle Scholar
  28. Kullman, L. 2010. A richer, greener and smaller alpine world: Review and projection of warming-induced plant cover change in the Swedish Scandes. AMBIO 39: 159–169.CrossRefGoogle Scholar
  29. McCune, M., and M.J. Mefford. 1999. Multivariate analysis of ecological data, version 4.20. Gleneden Beach: MjM Software design.Google Scholar
  30. McCune, M., and J.B. Grace. 2002. Analysis of ecological communities. Gleneden Beach: MjM Software design.Google Scholar
  31. Moen, J., and A. Lagerström. 2008. High species turnover and decreasing plant species richness on mountain summits in Sweden: Reindeer grazing overrides climate change. Antarctic, and Alpine Research 40: 382–395.CrossRefGoogle Scholar
  32. Molau, U. 1997. Responses to natural climatic variation and experimental warming in two tundra plant species with contrasting life forms: Cassiope tetragona and Ranunculus nivalis. Global Change Biology 3: 97–107.CrossRefGoogle Scholar
  33. Myers-Smith, I.H., D.S. Hik, C. Kennedy, D. Cooley, J.F. Johnstone, A.J. Kenney, and C.J. Krebs. 2011. Expansion of canopy-forming willows over the 20th century on Herschel Island, Yukon Territory, Canada. AMBIO 40: 610–623. doi: 10.1007/s13280-011-0168-y.CrossRefGoogle Scholar
  34. Olofsson, J., L. Ericson, M. Torp, S. Stark, and R. Baxter. 2011. Carbon balance of Arctic tundra under increased snow cover mediated by a plant pathogen. Nature Climate Change 1: 220–223.CrossRefGoogle Scholar
  35. Olofsson, J., L. Oksanen, T. Callaghan, P.E. Hulme, T. Oksanen, and O. Suominen. 2009. Herbivores inhibit climate-driven shrub expansion on the tundra. Global Change Biology 15: 2681–2693.CrossRefGoogle Scholar
  36. Olsen, M.S., T.V. Callaghan, J. Reist, L.O. Reiersen, M. Ananicheva, D. Dahl-Jensen, S. Gerland, B. Goodison, et al. 2011. The changing Arctic cryosphere and likely consequences: An overview. AMBIO 40(Special Report 1): 111–118.CrossRefGoogle Scholar
  37. Parsons, A.N., M.C. Press, P.A. Wookey, J.M. Welker, C.H. Robinson, T.V. Callaghan, and J.A. Lee. 1995. Growth responses of Calamagrostis lapponica to simulated environmental change in the sub-Arctic. Oikos 72: 61–66.CrossRefGoogle Scholar
  38. PMK. 2008. The environmental monitoring programme has been funded by the Swedish Environmental Protection Agency and data produced by the Department of Aquatic Science and Assessment at the Swedish University of Agricultural Sciences, SLU. http://www.ma.slu.se/. Accessed 14 Nov 2008.
  39. Prach, K., J. Kosnar, J. Klimesova, and M. Hais. 2010. High Arctic vegetation after 70 years: A repeated analysis from Svalbard. Polar Biology 33: 635–639.CrossRefGoogle Scholar
  40. Rundqvist, S., H. Hedenås, A. Sandström, U. Emanuelsson, C. Jonasson, and T.V. Callaghan. 2011. Tree and shrub expansion over the past 34 years at the tree-line near Abisko, Sweden. AMBIO 40: 683–692.CrossRefGoogle Scholar
  41. Schaeffer, J.A., and F. Messier. 1995. Scale-dependent correlations of Arctic vegetation and snow cover. Arctic and Alpine Research 27: 38–43.CrossRefGoogle Scholar
  42. Sommer, J.H., J.H. Kreft, W. Jetz, J. Mutke, and W. Barthlott. 2010. Projected impacts of climate change on regional capacities for global plant species richness. Proceedings of the Royal Society B 277: 2271–2280.CrossRefGoogle Scholar
  43. Stenström, M., F. Gugerli, and G.H.R. Henry. 1997. Response of Saxifraga oppositifolia L. to simulated climate change at three contrasting latitudes. Global Change Biology 3: 44–54.CrossRefGoogle Scholar
  44. Sundqvist, M.K., R.G. Björk, and U. Molau. 2008. Establishment of boreal forest species in alpine dwarf-shrub heath in subarctic Sweden Mountain birch advance into alpine tundra. Plant Ecology & Diversity 1: 67–75.CrossRefGoogle Scholar
  45. Svensson, B.M., B.Å. Carlsson, P.S. Karlsson, and K.O. Nordell. 1993. Comparative long-term demography of three species of Pinguicula. Journal of Ecology 81: 635–645.CrossRefGoogle Scholar
  46. Tape, K., M. Sturm, and C. Racine. 2006. The evidence for shrub expansion in Northern Alaska and the Pan-Arctic. Global Change Biology 12: 686–702.CrossRefGoogle Scholar
  47. Tenow, O., H. Bylund, and B. Holmgren. 2001. Impact on mountain birch forests in the past and the future of outbreaks of two geometrid insects. In Nordic Mountain Birch Ecosystems, Man and the Biosphere series, vol. 27, ed. F.E. Wielgolaski, 223–239. New York: The Parthenon Publishing Group.Google Scholar
  48. Van Bogaert, R., K. Haneca, J. Hoogesteger, C. Jonasson, M. De Dapper, and T.V. Callaghan. 2011. A century of tree line changes in sub-Arctic Sweden show local and regional variability and only a minor role of 20th Century climate warming. Journal of Biogeography. doi: 10.1111/j.1365-2699.2010.02453.x.
  49. Van Bogaert, R., C. Jonasson, M. De Dapper, and T.V. Callaghan. 2010. Range expansion of thermophilic Aspen (Populus tremula L.) in the Swedish subarctic. Arctic, Antarctic, and Alpine Research 42: 362–375.CrossRefGoogle Scholar
  50. van der Wal, R. 2006. Do herbivores cause habitat degradation or vegetation state transition? Evidence from the tundra. Oikos 114: 117–186.CrossRefGoogle Scholar
  51. van Wijk, M., K.E. Clemmensen, G.R. Shaver, M. Williams, T.V. Callaghan, F.S. Chapin III, J.H.C. Cornelissen, L. Gough, et al. 2003. Long-term ecosystem level experiments at Toolik Lake, Alaska, and at Abisko, Northern Sweden: Generalisations and differences in ecosystem and plant type responses to global change. Global Change Biology 10: 105–123.CrossRefGoogle Scholar
  52. Virtanen, R., M. Luoto, T. Rämä, K. Mikkola, J. Hjort, J.-A. Grytnes, and H.J.B. Birks. 2010. Recent vegetation changes at the high-latitude tree line ecotone are controlled by geomorphological disturbance, productivity and diversity. Global Ecology and Biogeography 19: 810–821.CrossRefGoogle Scholar
  53. Walker, M.D., C.H. Wahren, R.D. Hollister, G.H.R. Henry, L.E. Ahlquist, J.M. Alatalo, M.S. Bret-Harte, M.P. Calef, et al. 2006. Plant community response to experimental warming across the tundra biome. Proceedings of the National Academy of Sciences 103: 1342–1346.CrossRefGoogle Scholar
  54. Walther, B.A., and J.L. Moore. 2005. The concepts of bias, precision and accuracy, and their use in testing the performance of species richness estimators, with a literature review of estimator performance. Ecography 28: 815–829.CrossRefGoogle Scholar
  55. Wielgolaski, F.E. (ed.). 2005. Plant ecology, herbivory, and human impact in Nordic Mountain Birch Forests. Berlin: Springer.Google Scholar
  56. Wilson, S.D., and C. Nilsson. 2009. Arctic and alpine vegetation change over years. Global Change Biology 15: 1676–1684.CrossRefGoogle Scholar

Copyright information

© Royal Swedish Academy of Sciences 2012

Authors and Affiliations

  • Henrik Hedenås
    • 1
    • 2
  • Bengt Å. Carlsson
    • 3
  • Urban Emanuelsson
    • 4
  • Alistair D. Headley
    • 5
  • Christer Jonasson
    • 2
  • Brita M. Svensson
    • 3
  • Terry V. Callaghan
    • 6
    • 7
  1. 1.Department of Forest Resource ManagementSwedish University of Agricultural ScienceUmeåSweden
  2. 2.Abisko Scientific Research StationAbiskoSweden
  3. 3.Department of Plant Ecology and Evolution, Evolutionary Biology CentreUppsala UniversityUppsalaSweden
  4. 4.Swedish Biodiversity CentreUppsalaSweden
  5. 5.West YorkshireUK
  6. 6.Royal Swedish Academy of SciencesStockholmSweden
  7. 7.Department of Animal and Plant SciencesUniversity of SheffieldSheffieldUK

Personalised recommendations