, Volume 41, Supplement 3, pp 256–268 | Cite as

Enhanced UV-B and Elevated CO2 Impacts Sub-Arctic Shrub Berry Abundance, Quality and Seed Germination

  • Dylan Gwynn-Jones
  • Alan G. Jones
  • Alice Waterhouse
  • Ana Winters
  • David Comont
  • John Scullion
  • Rosie Gardias
  • Bente J. Graee
  • John A. Lee
  • Terry V. Callaghan


This study investigated the effects of long-term-enhanced UV-B, and combined UV-B with elevated CO2 on dwarf shrub berry characteristics in a sub-arctic heath community. Germination of Vaccinium myrtillus was enhanced in seeds produced at elevated UV-B, but seed numbers and berry size were unaffected. Elevated UV-B and CO2 stimulated the abundance of V. myrtillus berries, whilst UV-B alone stimulated the berry abundance of V. vitis-idaea and Empetrum hermaphroditum. Enhanced UV-B reduced concentrations of several polyphenolics in V. myrtillus berries, whilst elevated CO2 increased quercetin glycosides in V. myrtillus, and syringetin glycosides and anthocyanins in E. hermaphroditum berries. UV-B × CO2 interactions were found for total anthocyanins, delphinidin-3-hexoside and peonidin-3-pentosidein in V. myrtillus berries but not E. hermaphroditum. Results suggest positive impacts of UV-B on the germination of V. myrtillus and species-specific impacts of UV-B × elevated CO2 on berry abundance and quality. The findings have relevance and implications for human and animal consumers plus seed dispersal and seedling establishment.


CO2 Elevated UV-B Enhanced Arctic Reproduction Berry Abundance Secondary metabolites 



The authors are grateful to the UK Natural Environmental Research Council for supporting this research (grant NE/H023690/1). We also thank the UV4Growth cost network for supporting the study. Finally, we thank all staff at Abisko Naturvetenskpliga station and the Swedish Royal Academy of Sciences for making this study possible via their unswerving support over the past two decades.

Supplementary material

13280_2012_311_MOESM1_ESM.doc (122 kb)
Supplementary material 1 (DOC 122 kb)
13280_2012_311_MOESM2_ESM.tif (517 kb)
Supplementary material 2 (TIFF 516 kb)


  1. Albert, K.R., T.N. Mikkelsen, H. Ro-Poulsen, A. Michelsen, M.F. Arndal, L. Bredahl, K.B. Hakansson, N.M. Boesgaard, et al. 2011. Improved UV-B screening capacity does not prevent negative effects of ambient UV irradiance on PSII performance in high arctic plants. Results from a six year UV exclusion study. Journal of Plant Physiology 167: 1542–1549.CrossRefGoogle Scholar
  2. Allen, D.J., S. Nogues, and N.R. Baker. 1998. Ozone depletion and increased UV-B radiation: Is there a real threat to photosynthesis? Journal of Experimental Botany 49: 1775–1788.Google Scholar
  3. Anderson, M. 1985. The Saami reindeer-breeders of Norwegian Lapland. American Scientist 73: 524–532.Google Scholar
  4. Ballaré, C.L., C.M. Rousseaux, P.S. Searles, J.G. Zaller, C.V. Giordano, M.T. Robson, M.M. Caldwell, O.E. Sala, et al. 2001. Impacts of solar ultraviolet-B radiation on terrestrial ecosystems of Tierra del Fuego (southern Argentina). An overview of recent progress. Journal of Photochemical Photobiology B 62: 67–77.CrossRefGoogle Scholar
  5. Baskin, C.C., and J.M. Baskin. 1998. Seeds; Ecology, biogeography, evolution of dormancy and germination. San Diego: Academic Press.Google Scholar
  6. Baskin, C.C., O. Zackrisson, and J.M. Baskin. 2002. Role of warm stratification in promoting germination of seeds of Empetrum hermaphroditum (Empetraceae), a circumboreal species with a stony endocarp. American Journal of Botany 89: 486–493.CrossRefGoogle Scholar
  7. Berli, F., J. D’Angelo, B. Cavagnaro, R. Bottini, R. Wuilloud, and M.F. Silva. 2008. Phenolic composition in grape (Vitis vinifera L. cv. Malbec) ripened with different solar UV-B radiation levels by capillary zone electrophoresis. Journal of Agricultural and Food Chemistry 56: 2892–2898.CrossRefGoogle Scholar
  8. Björn, L.O., T.V. Callaghan, I. Johnsen, J.A. Lee, Y. Manetas, N.D. Paul, M. Sonesson, A. Wellburn, D. Coops, et al. 1997. The effects of UV-B radiation on European heathland species. Plant Ecology 128: 253–264.CrossRefGoogle Scholar
  9. Caldwell, M.M., C.L. Ballaré, J.F. Bornman, S.D. Flint, L.O. Björn, A.H. Teramura, G. Kulandaivelu, and M. Tevini. 2003. Terrestrial ecosystems, increased solar ultraviolet radiation and interactions with other climatic change factors. Photochemical and Photobiological Science 2: 29–38.CrossRefGoogle Scholar
  10. Caspari, H.W., A. Lang, and P. Alspach. 1998. Effects of girdling and leaf removal on fruit set and vegetative growth in grape. American Journal of Ecology and Viticulture 49: 359–366.Google Scholar
  11. Catoni, C., H.M. Schaefer, and A. Peters. 2008. Fruit for health: The effect of flavonoids on humoral immune response and food selection in a frugivorous bird. Functional Ecology 22: 649–654.CrossRefGoogle Scholar
  12. Day, T.A., C.T. Ruhlan, C.W. Grobe, and F. Xiong. 1999. Growth and reproduction of Antarctic vascular plants in response to warming and UV radiation reductions in the field. Oecologia 119: 24–35.CrossRefGoogle Scholar
  13. Day, T.A., C.T. Ruhland, and F.S. Xiong. 2001. Influence of solar ultraviolet-B radiation on Antarctic terrestrial plants: Results from a 4-year field study. Journal of Photochemical Photobiology B 62: 78–87.CrossRefGoogle Scholar
  14. Demchik, S.M., and T. Day. 1996. Effect of enhanced UV-B radiation on pollen quantity, quality and seed yield in Brassica rapa (Brassicaceae). American Journal of Botany 85: 573–579.CrossRefGoogle Scholar
  15. Eriksson, O. 1989. Seedling dynamics and life histories in clonal plants. Oikos 55: 231–238.CrossRefGoogle Scholar
  16. Faria, A., J. Oliveira, P. Neves, P. Gameiro, C. Santos-Buelga, V. De Freitas, and N. Mateus. 2005. Anti-oxidant properties of prepared blueberry. Journal of Agricultural and Food Chemistry 53: 6896–6902.CrossRefGoogle Scholar
  17. Giuntini, D., V. Lazzeri, V. Calvenzani, C. Dall’Asta, G. Galaverna, C. Tonelli, K. Petroni, and A. Ranieri. 2008. Flavonoid profiling and biosynthetic gene expression in mesocarp and peel of two tomato genotypes grown under UV-B-depleted conditions during ripening. Journal of Agricultural and Food Chemistry 56: 5905–5915.CrossRefGoogle Scholar
  18. Gonçalves, B., V. Falco, J. Moutinho-Pereira, E. Bacelar, F. Peixoto, and C. Correia. 2009. Effects of elevated CO2 on grapevine (Vitis vinifera L.): Volatile composition, phenolic content, and in vitro antioxidant activity of red wine. Journal of Food Chemistry 57: 265–273.CrossRefGoogle Scholar
  19. Graae, B., R. Ejrnæs, S.I. Lang, E. Meineri, P.T. Ibarra, and H.H. Bruun. 2011. Strong microsite control of seedling recruitment in tundra. Oecologia 166: 565–576.CrossRefGoogle Scholar
  20. Gwynn-Jones, D., J.A. Lee, and T.V. Callaghan. 1997. Effects of enhanced UV-B radiation and elevated carbon dioxide concentrations on a sub-arctic forest heath ecosystem. Plant Ecology 128: 243–249.CrossRefGoogle Scholar
  21. Harper, J.L., and J. Ogden. 1970. The reproductive strategy of higher plants. I. The concept of strategy with special reference to Senecio vulgaris L. Journal of Ecology 58: 681–698.CrossRefGoogle Scholar
  22. Heinonen, M. 2007. Antioxidant activity and antimicrobial effect of berry phenolics—a Finnish perspective. Molecular Nutrition & Food Research 51: 684–691.CrossRefGoogle Scholar
  23. Heinonen, I.M., A.S. Meyer, and E.N. Frankel. 1998. Antioxidant activity of berry phenolics on human low-density lipoprotein and liposome oxidation. Journal of Agricultural and Food Chemistry 46: 4107–4112.CrossRefGoogle Scholar
  24. Hikosaka, K., T. Kinugasa, S. Oikawa, Y. Onoda, and T. Hirose. 2011. Effects of elevated CO2 concentration on seed production in C3 annual plants. Journal of Experimental Botany 62: 1523–1530.CrossRefGoogle Scholar
  25. IPCC. 2007. Climate change 2007: Synthesis report. Contribution of Working groups I, II and III to the fourth assessment report of the intergovernmental panel on climate change. R.K. Pachauri, and Reisinger, A., eds. Geneva: IPCC.Google Scholar
  26. Jablonski, L.M., X. Wang, and P.S. Curtis. 2002. Plant reproduction under elevated CO2 conditions: A meta-analysis of reports on 79 crop and wild species. New Phytologist 156: 9–26.CrossRefGoogle Scholar
  27. Jansen, M.A.K., K. Hectors, N.M. O’brien, Y. Guisez, and G. Potters. 2008. Plant stress and human health: Do human consumers benefit from UV-B acclimated crops? Plant Science 175: 449–458.CrossRefGoogle Scholar
  28. Johanson, U., C. Gehrke, L.O. Björn, T.V. Callaghan, and M. Sonesson. 1995a. The effects of enhanced U radiation on a subarctic heath ecosystem. AMBIO 24: 106–111.Google Scholar
  29. Johanson, U., C. Gehrke, L.O. Björn, and T.V. Callaghan. 1995b. The effects of enhanced UV-B on the growth of dwarf shrubs in a sub-arctic heathland. Functional Ecology 9: 713–719.CrossRefGoogle Scholar
  30. Johnson, K.S., and G.W. Felton. 2001. Plant phenolics as dietary antioxidants for herbivorous insects: A test with genetically modified tobacco. Journal of Chemical Ecology 27: 2579–2597.CrossRefGoogle Scholar
  31. Körner, C. 2006. Plant CO2 responses: An issue of definition, time and resource supply. New Phytologist 172: 393–411.CrossRefGoogle Scholar
  32. Koti, S., K.R. Reddy, V.R. Reddy, V.G. Kakani, and D.L. Zhao. 2005. Interactive effects of carbon dioxide, temperature, and ultraviolet-B radiation on soybean (Glycine max L.) flower and pollen morphology, pollen production, germination, and tube lengths. Journal of Experimental Botany 56: 725–736.CrossRefGoogle Scholar
  33. Lake, J.A., K.J. Field, M.P. Davey, D.J. Beerling, and B.H. Lomax. 2009. Metabolomic and physiological responses reveal multi-phasic acclimation of Arabidopsis thaliana to chronic UV radiation. Plant, Cell and Environment 32: 1377–1389.CrossRefGoogle Scholar
  34. Macheix, J.-.J., A. Fleuriet, and J. Billot. 1990. Fruit phenolics. Boca Raton: CRC Press.Google Scholar
  35. Manney, G.L., M.L. Santee, M. Rex, N.J. Livesey, M.C. Pitts, P. Veefkind, E.R. Nash, I. Wohltmann, et al. 2011. Unprecedented arctic ozone loss in 2011. Nature 478: 469–475.CrossRefGoogle Scholar
  36. Markham, K.R., K.G. Ryan, S.J. Bloor, and K.A. Mitchell. 1998. An increase in the luteolin: apigenin ratio in Marchatia polymorpha on UV-B enhancement. Ecological biochemistry 48: 791–794.Google Scholar
  37. Martin-Aragón, S., B. Basabe, J.M. Benedi, and A.M. Villar. 1998. Anti-oxidant action of Vaccinium myrtillus L. Phytotherapy Research 12: 104–106.CrossRefGoogle Scholar
  38. McKenzie, R.L., P.J. Aucamp, A.F. Bais, L.O. Björn, M. Ilyas, and S. Madronich. 2011. Ozone depletion and climate change: Impacts on UV radiation. Photochemical & Photobiological Sciences 10: 182–198.CrossRefGoogle Scholar
  39. Meyer, A.S., O. Yi, D.A. Pearson, A.L. Waterhouse, and E.N. Frankel. 1997. Inhibition of human low-density lipoprotein oxidation in relation to composition of phenolic antioxidants in grapes (Vitis vinifera). Journal of Agricultural and Food Chemistry 45: 1638–1643.CrossRefGoogle Scholar
  40. Musil, C.F. 1996. Accumulated effect of elevated ultraviolet-B radiation over multiple generations of the arid-environment annual Dimorphotheca sinuata DC. (Asteraceae). Plant, Cell and Environment 9: 1017–1027.CrossRefGoogle Scholar
  41. Musil, C.F., S.B.M. Chimphango, and F.D. Dakora. 2002. Effects of elevated ultraviolet-B radiation on native and cultivated plants of southern Africa. Annals of Botany 90: 127–137.CrossRefGoogle Scholar
  42. Newsham, K.K., and S.A. Robinson. 2009. Responses of plants in polar regions to UVB exposure: A meta-analysis. Global Change Biology 15: 2574–2589.CrossRefGoogle Scholar
  43. Paul, N.D., and D. Gwynn-Jones. 2003. Ecological roles of solar UV radiation: Towards an integrated approach. Trends in Ecology & Evolution 18: 48–55.CrossRefGoogle Scholar
  44. Peñuelas, J., and M. Estiarte. 1998. Can elevated CO2 affect secondary metabolism and ecosystem function? Trends in Ecology & Evolution 13: 20–24.CrossRefGoogle Scholar
  45. Phoenix, G.K., D. Gwynn-Jones, T.V. Callaghan, D. Sleep, and J.A. Lee. 2001. Effects of global change on a sub-arctic heath: effects of enhanced UV-B radiation and increased summer precipitation. Journal of Ecology 89: 256–267.CrossRefGoogle Scholar
  46. Phoenix, G.K., D. Gwynn-Jones, and T.V. Callaghan. 2002. Ecological importance of ambient solar ultraviolet radiation to a sub-arctic heath community. Plant Ecology 165: 263–273.CrossRefGoogle Scholar
  47. Price, S.F., P.J. Breen, M. Valladao, and B.T. Watson. 1995. Cluster sun exposure and quercetin in pinot noir grapes and wine. American Society for Enology and Viticulture 46: 187–194.Google Scholar
  48. Prior, R.L., G. Cao, A. Martin, E. Sofic, J. McEwen, C. O’Brien, N. Lischner, M. Ehlenfeldt, et al. 1998. Antioxidant capacity as influenced by total phenolic and anthocyanin content, maturity, and variety of Vaccinium species. Journal of Agricultural and Food Chemistry 46: 2686–2693.CrossRefGoogle Scholar
  49. Qaderi, M.M., and D.M. Reid. 2005. Growth and physiological responses of canola (Brassica napus) to UV-B and CO2 under controlled environment conditions. Physiologia Plantarum 125: 247–259.CrossRefGoogle Scholar
  50. Qaderi, M.M., D.M. Reid, and E.C. Yeung. 2007. Morphological and physiological responses of canola (Brassica napus) siliquas and seeds to UVB and CO2 under controlled environment conditions. Environmental and Experimental Botany 60: 428–437.CrossRefGoogle Scholar
  51. R Development Core Team. 2011. R: A language and environment for statistical computing, reference index version 2.12.2. R Foundation for Statistical Computing, Vienna. Accessed 11 Feb 2011.
  52. Ritchie, J.C. 1956. Vaccinium myrtillus L. Journal of Ecology 44: 291–299.CrossRefGoogle Scholar
  53. Robson, T.M., V.A. Pancotto, S.D. Flint, C.L. Ballare, O.E. Sala, A.L. Scopel, and M.M. Caldwell. 2003. Six years of solar UV-B manipulations affect growth of Sphagnum and vascular plants in a Tierra del Fuego peatland. New Phytologist 160: 379–389.CrossRefGoogle Scholar
  54. Rozema, J., P. Boele, B. Solheim, M. Zielke, A. Buskens, M. Doorenbosch, R. Fjin, J. Herder, et al. 2006. Stratospheric ozone depletion: High arctic tundra plant growth on Svalbard is not affected by enhanced UV-B after 7 years of UV-B supplementation in the field. Plants and Climate Change: Tasks for vegetation science 34: 121–136.CrossRefGoogle Scholar
  55. Schultz, H.R. 2000. Climate change and viticulture: A European perspective on climatology, carbon dioxide and UV-B effects. Australian Journal of Grape and Wine Research 6: 2–12.CrossRefGoogle Scholar
  56. Searles, P.S., S.D. Flint, and M.M. Caldwell. 2001. A meta-analysis of plant field studies simulating stratospheric ozone-depletion. Oecologia 127: 1–10.CrossRefGoogle Scholar
  57. Shevtsova, A., A. Ojala, S. Neuvonen, M. Vieno, and E. Haukioja. 1995. Growth and reproduction of dwarf shrubs in a subarctic plant community: Annual variation and above-ground interactions with neighbors. Journal of Ecology 2: 263–275.Google Scholar
  58. Singh, S.K., V.G. Kakani, G.K. Surabhi, and K.R. Reddy. 2010. Cowpea (Vigna unguiculata [L.] Walp) genotypes response to multiple abiotic stresses. Journal of Photochemistry and Photobiology 100: 135–146.CrossRefGoogle Scholar
  59. Sonesson, M., and B. Lundberg. 1974. Late quaternary forest development of the Torneträsk area, North Sweden. Oikos 25: 121–133.CrossRefGoogle Scholar
  60. Stephanou, M., and Y. Manetas. 1998. Enhanced UV-B radiation increases the reproductive effort in the Mediterranean shrub Cistus creticus under field conditions. Plant Ecology 134: 91–96.CrossRefGoogle Scholar
  61. Sullivan, J.H., and A.H. Teramura. 1988. Effects of ultraviolet-B radiation on seedling growth in the Pinaceae. American Journal of Botany 75: 225–230.CrossRefGoogle Scholar
  62. Szmidt, A.E., M.C. Nilsson, E. Briceno, O. Zackrisson, and X.R. Wang. 2002. Establishment and genetic structure of Empetrum hermaphroditum populations in northern Sweden. Journal of Vegetation Science 13: 627–634.Google Scholar
  63. Talavera, S., C. Felgines, O. Texier, C. Besson, A. Mazur, J.L. Lamaison, and C. Remesy. 2006. Bioavailability of a bilberry anthocyanin extract and its impact on plasma antioxidant capacity in rats. Journal of the Science of Food and Agriculture 86: 90–97.CrossRefGoogle Scholar
  64. Taruscio, T.G., D.L. Barney, and J. Exon. 2004. Content and profile of flavanoid and phenolic acid compounds in conjunction with the antioxidant capacity for a variety of northwest Vaccinium berries. Journal of agricultural and food chemistry 52: 3169–3176.CrossRefGoogle Scholar
  65. Taulavuori, E., M. Bäckman, K. Taulavuori, D. Gwynn-Jones, U. Johanson, K. Laine, T.V. Callaghan, M. Sonesson, et al. 1998. Long-term exposure to ultraviolet-B radiation in the sub-arctic does not cause oxidative stress in Vaccinium myrtillus. New Phytologist 140: 691–697.CrossRefGoogle Scholar
  66. Teramura, A.H., J.H. Sullivan, and L.H. Ziska. 1990. Interaction of elevated ultraviolet-B radiation and CO2 on productivity and photosynthetic characteristics in wheat, rice, and soybean. Plant Physiology 94: 470–475.CrossRefGoogle Scholar
  67. Tolvalen, A., and K. Laine. 1997. Effects of reproduction and artificial herbivory on vegetative growth and resource levels in deciduous and evergreen dwarf shrubs. Canadian Journal of Botany 75: 656–666.CrossRefGoogle Scholar
  68. Tosserams, M., A. Visser, M. Groen, G. Kalis, E. Magendas, and J. Rozema. 2001. Combined factors of CO2 concentration and enhanced UV-B radiation on faba bean. Plant Ecology 154: 195–210.CrossRefGoogle Scholar
  69. Tybirk, K., M.C. Nilsson, A. Michelson, H.L. Kristensen, A. Shevtsova, M.T. Strandberg, M. Johansson, K.E. Nielsen, et al. 2000. Nordic Empetrum dominated ecosystems: Function and susceptibility to environmental changes. AMBIO 29: 90–97.Google Scholar
  70. van de Staaij, J.W.M., E. Bolink, J. Rozema, and W.H.O. Ernst. 1997. The impact of elevated UV-B (280–320 nm) radiation levels on the reproduction biology of a highland and lowland population of Silene vulgaris. Plant Ecology 128: 173–179.CrossRefGoogle Scholar
  71. Wand, S.J.E., G.F. Midgley, and C.F. Musil. 1996. Growth, phenology and reproduction of an arid-environment winter ephemeral Dimorphotheca pluvialis in response to combined increases in CO2 and UV-B radiation. Environmental Pollution 94(247): 254.Google Scholar
  72. Wang, S.Y., J.A. Bunce, and J.L. Maas. 2003. Elevated carbon dioxide increases contents of antioxidant compounds in field-grown strawberries. Journal of Agricultural and Food Chemistry 51: 4315–4320.CrossRefGoogle Scholar
  73. Wang, S.Y., N. Qiu, X. Wang, Z. Ma, and G. Du. 2008. Effects of enhanced UV-B radiation on fitness of an alpine species Cerastium glomeratum Thuill. Journal of Plant Ecology 1: 197–202.CrossRefGoogle Scholar
  74. Zvereva, E.L., and M.V. Kozlov. 2005. Growth and reproduction of dwarf shrubs, Vaccinium myrtillus and V. vitis-idaea, in a severely polluted area. Basic and Applied Ecology 6: 261–274.CrossRefGoogle Scholar

Copyright information

© Royal Swedish Academy of Sciences 2012

Authors and Affiliations

  • Dylan Gwynn-Jones
    • 1
  • Alan G. Jones
    • 1
  • Alice Waterhouse
    • 1
  • Ana Winters
    • 1
  • David Comont
    • 1
  • John Scullion
    • 1
  • Rosie Gardias
    • 1
  • Bente J. Graee
    • 2
  • John A. Lee
    • 3
  • Terry V. Callaghan
    • 4
  1. 1.Institute of Biological Environmental and Rural SciencesAberystwyth UniversityWalesUK
  2. 2.Department of BiologyNorwegian University of Science and TechnologyTrondheimNorway
  3. 3.Department of Animal and Plant SciencesUniversity of SheffieldSheffieldUK
  4. 4.Royal Swedish Academy of SciencesStockholmSweden

Personalised recommendations