Skip to main content

Advertisement

Log in

Future Distribution of Arctic Char Salvelinus alpinus in Sweden under Climate Change: Effects of Temperature, Lake Size and Species Interactions

  • Published:
AMBIO Aims and scope Submit manuscript

Abstract

Novel communities will be formed as species with a variety of dispersal abilities and environmental tolerances respond individually to climate change. Thus, models projecting future species distributions must account for species interactions and differential dispersal abilities. We developed a species distribution model for Arctic char Salvelinus alpinus, a freshwater fish that is sensitive both to warm temperatures and to species interactions. A logistic regression model using lake area, mean annual air temperature (1961–1990), pike Esox lucius and brown trout Salmo trutta occurrence correctly classified 95 % of 467 Swedish lakes. We predicted that Arctic char will lose 73 % of its range in Sweden by 2100. Predicted extinctions could be attributed both to simulated temperature increases and to projected pike invasions. The Swedish mountains will continue to provide refugia for Arctic char in the future and should be the focus of conservation efforts for this highly valued fish.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Araujo, M.B., and M. Luoto. 2007. The importance of biotic interactions for modelling species distributions under climate change. Global Ecology and Biogeography 16: 743–753.

    Article  Google Scholar 

  • Bradshaw, W.E., and C.M. Holzapfel. 2006. Climate change—Evolutionary response to rapid climate change. Science 312: 1477–1478.

    Article  CAS  Google Scholar 

  • Burnham, K.P., and D.R. Anderson. 2002. Model selection and multimodel inference: A practical information-theoretic approach. New York: Springer.

    Google Scholar 

  • Byström, P., J. Karlsson, P. Nilsson, T. Van Kooten, J. Ask, and F. Olofsson. 2007. Substitution of top predators: Effects of pike invasion in a subarctic lake. Freshwater Biology 52: 1271–1280.

    Article  Google Scholar 

  • Chu, C., N.E. Mandrak, and C.K. Minns. 2005. Potential impacts of climate change on the distributions of several common and rare freshwater fishes in Canada. Diversity and Distributions 11: 299–310.

    Article  Google Scholar 

  • Ekman, S. 1922. The history of animal distributions on the Scandinavian Peninsula. Stockholm: Albert Bonniers Förlag (in Swedish).

  • Elliott, J.M. 1982. The effects of temperature and ration size on the growth and energetics of salmonid fish in captivity. Comparative Biochemistry and Physiology 73: 81–92.

    Article  Google Scholar 

  • Elliott, J.M., and J.A. Elliott. 2010. Temperature requirements of Atlantic salmon Salmo salar, brown trout Salmo trutta and Arctic charr Salvelinus alpinus: predicting the effects of climate change. Journal of Fish Biology 77: 1793–1817.

    Article  CAS  Google Scholar 

  • Englund, G., F. Johansson, P. Olofsson, J. Salonsaari, and J. Öhman. 2009. Predation leads to assembly rules in fragmented fish communities. Ecology Letters 12: 663–671.

    Article  Google Scholar 

  • Eriksson, T., J. Andersson, P. Byström, M. Hörnell-Willebrand, T. Laitila, C. Sandström, and T. Willebrand. 2006. Fish and wildlife in the Swedish mountain area—Resources, use and management. International Journal of Biodiversity and Management 2: 334–342.

    Article  Google Scholar 

  • Fagan, W.F. 2002. Connectivity, fragmentation, and extinction risk in dendritic metapopulations. Ecology 83: 3243–3249.

    Article  Google Scholar 

  • Fang, X., and H.G. Stefan. 2009. Simulations of climate effects on water temperature, dissolved oxygen, and ice and snow covers in lakes of the contiguous United States under past and future climate scenarios. Limnology and Oceanography 54: 2359–2370.

    Article  CAS  Google Scholar 

  • Fielding, A.H., and J.F. Bell. 1997. A review of methods for the assessment of prediction errors in conservation presence/absence models. Environmental Conservation 24: 38–49.

    Article  Google Scholar 

  • Filipsson, O. 1994. New fish populations as a result of stocking or spreading of fish. Information från Sötvattenslaboratoriet 2: 1–65 (in Swedish).

    Google Scholar 

  • Finstad, A.G., T. Forseth, B. Jonsson, E. Bellier, T. Hesthagen, A.J. Jensen, D.O. Hessen, and A. Foldvik. 2011. Competitive exclusion along climate gradients: Energy efficiency influences the distribution of two salmonid fishes. Global Change Biology 17: 1703–1711.

    Article  Google Scholar 

  • Fry, F.E.J. 1971. The effect of environmental factors on the physiology of fish. In Fish physiology, vol. 6, ed. W.S. Hoar, and D.J. Randall. New York: Academic Press.

    Google Scholar 

  • Gotelli, N.J., G.R. Graves, and C. Rahbek. 2010. Macroecological signals of species interactions in the Danish avifauna. Proceedings of the National Academy of Sciences of the United States of America 107: 5030–5035.

    Article  CAS  Google Scholar 

  • Hammar, J. 1992. The significance of the Arctic char (Salvelinus alpinus) species complex in Sweden: Distribution, biology and status of an ice-age reminiscence. In Proceedings of the seventh ISACF workshop on Arctic char, ed. P.S. Maitland, 47–63. Drottningholm: International Society of Arctic Char Fanatics.

    Google Scholar 

  • Hanski, I. 2011. Habitat loss, the dynamics of biodiversity, and a perspective on conservation. AMBIO 40: 248–255.

    Article  Google Scholar 

  • Heikkinen, R.K., M. Luoto, R. Virkkala, R.G. Pearson, and J.H. Korber. 2007. Biotic interactions improve prediction of boreal bird distributions at macro-scales. Global Ecology and Biogeography 16: 754–763.

    Article  Google Scholar 

  • Hein, C.L., G. Öhlund, and G. Englund. 2011. Dispersal through stream networks: Modelling climate-driven range expansions of fishes. Diversity and Distributions 17: 641–651.

    Article  Google Scholar 

  • Hershey, A.E., G.A. Gettel, M.E. McDonald, M.C. Miller, H. Mooers, W.J. O’Brien, J. Pastor, C. Richards, et al. 1999. A geomorphic-trophic model for landscape control of Arctic lake food webs. BioScience 49: 887–897.

    Article  Google Scholar 

  • Hutchinson, G.E. 1957. Concluding remarks. Cold Spring Harbor Symposium on Quantitative Biology 22: 415–457.

    Article  Google Scholar 

  • IPCC (Intergovernmental Panel on Climate Change). 2007. Climate change 2007, Synthesis report. In Contribution of working groups I, II, and III to the fourth assessment report of the Intergovernmental Panel on Climate Change, ed. Core Writing Team, R.K. Pachauri, and A. Reisinger. Geneva, Switzerland: IPCC.

  • Jackson, D.A., P.R. Peres-Neto, and J.D. Olden. 2001. What controls who is where in freshwater fish communities—The roles of biotic, abiotic, and spatial factors. Canadian Journal of Fisheries and Aquatic Sciences 58: 157–170.

    Google Scholar 

  • Jeppesen, E., K. Christoffersen, F. Landkildehus, T. Lauridsen, S.L. Amsinck, F. Riget, and M. Sondergaard. 2001. Fish and crustaceans in northeast Greenland lakes with special emphasis on interactions between Arctic charr (Salvelinus alpinus), Lepidurus arcticus and benthic chydorids. Hydrobiologia 442: 329–337.

    Article  Google Scholar 

  • Jonsson, M., G. Englund, and D.A. Wardle. 2011. Direct and indirect effects of area, energy and habitat heterogeneity on breeding bird communities. Journal of Biogeography 38: 1186–1196.

    Article  Google Scholar 

  • Jonsson, B., and N. Jonsson. 2009. A review of the likely effects of climate change on anadromous Atlantic salmon Salmo salar and brown trout Salmo trutta, with particular reference to water temperature and flow. Journal of Fish Biology 75: 2381–2447.

    Article  CAS  Google Scholar 

  • Kjellström, E., L. Barring, U. Hansson, C. Jones, P. Samuelsson, M. Rummukainen, A. Ullerstig, U. Willen, et al. 2005. A 140-year simulation of European climate with the new version of the Rossby Center regional atmospheric climate model (RCA3). Swedish Meteorological and Hydrological Institute, Report 108, Norrköping, Sweden.

  • Klemetsen, A., P.A. Amundsen, J.B. Dempson, B. Jonsson, N. Jonsson, M.F. O’Connell, and E. Mortensen. 2003. Atlantic salmon Salmo salar L., brown trout Salmo trutta L. and Arctic charr Salvelinus alpinus (L.): A review of aspects of their life histories. Ecology of Freshwater Fish 12: 1–59.

    Article  Google Scholar 

  • Langeland, A., J.H. Abeelund, B. Jonsson, and N. Jonsson. 1991. Resource partitioning and niche shift in Arctic charr Salvelinus alpinus and brown trout Salmo trutta. Journal of Animal Ecology 60: 895–912.

    Article  Google Scholar 

  • Liu, C.R., P.M. Berry, T.P. Dawson, and R.G. Pearson. 2005. Selecting thresholds of occurrence in the prediction of species distributions. Ecography 28: 385–393.

    Article  Google Scholar 

  • Magnuson, J.J., L.B. Crowder, and P.A. Medwick. 1979. Temperature as an ecological resource. American Zoologist 19: 331–343.

    Google Scholar 

  • Neverman, D., and W.A. Wurtsbaugh. 1994. The thermoregulatory function of diel vertical migration for a juvenile fish, Cottus extensus. Oecologia 98: 247–256.

    Article  Google Scholar 

  • Nilsson, C., C.A. Reidy, M. Dynesius, and C. Revenga. 2005. Fragmentation and flow regulation of the world’s large river systems. Science 308: 405–408.

    Article  CAS  Google Scholar 

  • Öhman, J., I. Buffam, G. Englund, A. Blom, E. Lindgren, and H. Laudon. 2006. Associations between water chemistry and fish community composition: A comparison between isolated and connected lakes in northern Sweden. Freshwater Biology 51: 510–522.

    Article  Google Scholar 

  • Parmesan, C., and G. Yohe. 2003. A globally coherent fingerprint of climate change impacts across natural systems. Nature 421: 37–42.

    Article  CAS  Google Scholar 

  • Pearson, R.G., and T.P. Dawson. 2003. Predicting the impacts of climate change on the distribution of species: Are bioclimate envelope models useful? Global Ecology and Biogeography 12: 361–371.

    Article  Google Scholar 

  • R Development Core Team. 2011. R: A language and environment for statistical computing, R Foundation for Statistical Computing. Vienna: R Development Core Team. http://www.R-project.org.

  • Reist, J.D., F.J. Wrona, T.D. Prowse, M. Power, J.B. Dempson, R.J. Beamish, J.R. King, T.J. Carmichael, et al. 2006a. General effects of climate change on Arctic fishes and fish populations. AMBIO 35: 370–380.

    Article  Google Scholar 

  • Reist, J.D., F.J. Wrona, T.D. Prowse, M. Power, J.B. Dempson, J.R. King, and R.J. Beamish. 2006b. An overview of effects of climate change on selected Arctic freshwater and anadromous fishes. AMBIO 35: 381–387.

    Article  Google Scholar 

  • Ritchie, E.G., J.K. Martin, C.N. Johnson, and B.J. Fox. 2009. Separating the influences of environment and species interactions on patterns of distribution and abundance: Competition between large herbivores. Journal of Animal Ecology 78: 724–731.

    Article  Google Scholar 

  • Roeckner, E., L. Bengtsson, J. Feichten, J. Lelieveld, and H. Rodhe. 1999. Transient climate change simulations with a coupled atmosphere-ocean GCM including the Tropospheric sulfur cycle. Journal of Climate 12: 3004–3032.

    Article  Google Scholar 

  • Sandlund, O.T., J. Museth, T.F. Naesje, S. Rognerud, R. Saksgard, T. Hesthagen, and R. Borgstrom. 2010. Habitat use and diet of sympatric Arctic charr (Salvelinus alpinus) and whitefish (Coregonus lavaretus) in five lakes in southern Norway: Not only interspecific population dominance? Hydrobiologia 650: 27–41.

    Article  Google Scholar 

  • Schweiger, O., J. Settele, O. Kudrna, S. Klotz, and I. Kuhn. 2008. Climate change can cause spatial mismatch of trophically interacting species. Ecology 89: 3472–3479.

    Article  Google Scholar 

  • Sharma, S., D.A. Jackson, and C.K. Minns. 2009. Quantifying the potential effects of climate change and the invasion of smallmouth bass on native lake trout populations across Canadian lakes. Ecography 32: 517–525.

    Article  Google Scholar 

  • Spens, J., and J.P. Ball. 2008. Salmonid or nonsalmonid lakes: Predicting the fate of northern boreal fish communities with hierarchical filters relating to a keystone piscivore. Canadian Journal of Fisheries and Aquatic Sciences 65: 1945–1955.

    Article  Google Scholar 

  • Torgersen, C.E., D.M. Price, H.W. Li, and B.A. McIntosh. 1999. Multiscale thermal refugia and stream habitat associations of Chinook salmon in northeastern Oregon. Ecological Applications 9: 301–319.

    Article  Google Scholar 

  • Walther, G.R. 2010. Community and ecosystem responses to recent climate change. Philosophical Transactions of the Royal Society B-Biological Sciences 365: 2019–2024.

    Article  Google Scholar 

  • Yang, Z.L., E. Hanna, and T.V. Callaghan. 2011. Modelling surface-air-temperature variation over complex terrain around Abisko, Swedish Lapland: Uncertainties of measurements and models at different scales. Geografiska Annaler Series A-Physical Geography 93A: 89–112.

    Article  Google Scholar 

Download references

Acknowledgments

This research was funded by FORMAS (#2007-1149).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Catherine L. Hein.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hein, C.L., Öhlund, G. & Englund, G. Future Distribution of Arctic Char Salvelinus alpinus in Sweden under Climate Change: Effects of Temperature, Lake Size and Species Interactions. AMBIO 41 (Suppl 3), 303–312 (2012). https://doi.org/10.1007/s13280-012-0308-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13280-012-0308-z

Keywords

Navigation