AMBIO

, Volume 41, Supplement 3, pp 281–291 | Cite as

Modelling Tundra Vegetation Response to Recent Arctic Warming

Article

Abstract

The Arctic land area has warmed by >1 °C in the last 30 years and there is evidence that this has led to increased productivity and stature of tundra vegetation and reduced albedo, effecting a positive (amplifying) feedback to climate warming. We applied an individual-based dynamic vegetation model over the Arctic forced by observed climate and atmospheric CO2 for 1980–2006. Averaged over the study area, the model simulated increases in primary production and leaf area index, and an increasing representation of shrubs and trees in vegetation. The main underlying mechanism was a warming-driven increase in growing season length, enhancing the production of shrubs and trees to the detriment of shaded ground-level vegetation. The simulated vegetation changes were estimated to correspond to a 1.75 % decline in snow-season albedo. Implications for modelling future climate impacts on Arctic ecosystems and for the incorporation of biogeophysical feedback mechanisms in Arctic system models are discussed.

Keywords

Arctic tundra vegetation Climate change Shrub expansion Ecosystem modelling LPJ-GUESS Biogeophysical feedbacks 

Notes

Acknowledgments

The authors would like to acknowledge the valuable contributions of both Rita Wania and Annett Wolf to the development of process descriptions in LPJ-GUESS. They would also like to thank Dan Hayes (Oak Ridge National Laboratory, USA) for producing the wetland map for the study domain shown in Fig. 1b. The authors acknowledge financial support from the Swedish Research Council FORMAS. This study is a contribution to the Strategic Research Area Modelling the Regional and Global Earth System (MERGE) and to the Nordic Top-Research Initiative DEFROST.

Supplementary material

13280_2012_306_MOESM1_ESM.doc (139 kb)
Supplementary material 1 (DOC 139 kb)

References

  1. ACIA. 2005. Arctic Climate Impact AssessmentScientific Report, 1st ed. New York: Cambridge University Press.Google Scholar
  2. Arft, A.M., M.D. Walker, J. Gurevitch, J.M. Alatalo, M.S. Bret-Harte, M. Dale, M. Diemer, F. Gugerli, et al. 1999. Responses of tundra plants to experimental warming: Meta-analysis of the International Tundra Experiment. Ecological Monographs 69: 491–511.Google Scholar
  3. Beck, P.S.A., and S.J. Goetz. 2011. Satellite observations of high northern latitude vegetation productivity changes between 1982 and 2008: Ecological variability and regional differences. Environmental Research Letters 6: 045501. doi: 10.1088/1748-9326/6/4/045501.CrossRefGoogle Scholar
  4. Betts, R.A. 2000. Offset of the potential carbon sink from boreal forestation by decreases in surface albedo. Nature 408: 187–189.CrossRefGoogle Scholar
  5. Bhatt, U.S., D.A. Walker, M.K. Raynolds, J.C. Comiso, H.E. Epstein, G. Jia, R. Gens, J.E. Pinzon, et al. 2010. Circumpolar Arctic tundra vegetation change is linked to sea ice decline. Earth Interactions 14: 1–20.CrossRefGoogle Scholar
  6. Bonfils, C.J.W., T.J. Phillips, D.M. Lawrence, P. Cameron-Smith, W.J. Riley, and Z.M. Subin. 2012. On the influence of shrub height and expansion on northern high latitude climate. Environmental Research Letters 7: 015503. doi: 10.1088/1748-9326/7/1/015503.CrossRefGoogle Scholar
  7. Bunn, A.G., and S.J. Goetz. 2006. Trends in satellite-observed circumpolar photosynthetic activity from 1982 to 2003: The influence of seasonality, cover type, and vegetation density. Earth Interactions 10: 1–19.CrossRefGoogle Scholar
  8. Callaghan, T.V., L.O. Björn, F.S. Chapin III, Y. Chernov, T.R. Christensen, B. Huntley, R.A. Ims, M. Johansson, et al. 2005. Arctic tundra and polar desert ecosystems. In ACIA Arctic Climate Impact Assessment, 243–352. New York: Cambridge University Press.Google Scholar
  9. Callaghan, T.V., C.E. Tweedie, J. Åkerman, C. Andrews, J. Bergstedt, M.G. Butler, T.R. Christensen, Dorothy Cooley, et al. 2011. Multi-decadal changes in tundra environments and ecosystems: Synthesis of the International Polar Year-Back to the Future Project (IPY-BTF). AMBIO 40: 705–716.CrossRefGoogle Scholar
  10. Chapin, F.S., G.R. Shaver, A.E. Giblin, K.J. Nadelhoffer, and J.A. Laundre. 1995. Responses of arctic tundra to experimental and observed changes in climate. Ecology 76: 694–711.CrossRefGoogle Scholar
  11. Chapin, F.S., M. Sturm, M.C. Serreze, J.P. McFadden, J.R. Key, A.H. Lloyd, A.D. McGuire, T.S. Rupp, et al. 2005. Role of land-surface changes in Arctic summer warming. Science 310: 657–660.CrossRefGoogle Scholar
  12. Claussen, M., V. Brovkin, and A. Ganopolski. 2001. Biogeophysical versus biogeochemical feedbacks of large-scale land cover change. Geophysical Research Letters 28: 1011–1014.CrossRefGoogle Scholar
  13. DeFries, R., J.R.G. Townshend, and M. Hansen. 1999. Continuous fields of vegetation characteristics at the global scale at 1 km resolution. Journal of Geophysical Research 104: 16911–16925.CrossRefGoogle Scholar
  14. Elmendorf, S.C., G.H.R. Henry, R.D. Hollister, R.G. Björk, N. Boulanger-Lapointe, E.J. Cooper, J.H.C. Cornelissen, T.A. Day, et al. 2012. Plot-scale evidence of tundra vegetation change and links to recent summer warming. Nature Climate Change 2. doi: 10.1038/nclimate1465.
  15. Goetz, S.J., H.E. Epstein, U.S. Bhatt, G.J. Jia, J.O. Kaplan, H. Lischke, Q. Yu, A. Bunn, et al. 2011. Recent changes in arctic vegetation: Satellite observations and simulation model predictions. In Eurasian Arctic land cover and land use in a changing climate, ed. G. Gutman, and A. Reissell, 9–36. Dordrecht: Springer.Google Scholar
  16. Göttel, H., J. Alexander, E. Keup-Thiel, D. Rechild, S. Hagemann, T. Blome, A. Wolf, and D. Jacob. 2008. Influence of changed vegetation fields on regional climate simulations in the Barents Sea Region. Climatic Change 87: 35–50.CrossRefGoogle Scholar
  17. Graglia, E., S. Jonasson, A. Michelsen, I.K. Schmidt, M. Havström, and L. Gustavsson. 2001. Effects of environmental perturbations on abundance of subarctic plants after three, seven and ten years of treatments. Ecography 24: 5–12.CrossRefGoogle Scholar
  18. Harsch, M.A., P.E. Hulme, M.S. McGlone, and R.P. Duncan. 2009. Are treelines advancing? A global meta-analysis of treeline response to climate warming. Ecology Letters 12: 1040–1049.CrossRefGoogle Scholar
  19. Hedenås, H., H. Olsson, C. Jonasson, J. Bergstedt, U. Dahlberg, and T.V. Callaghan. 2011. Changes in tree growth, biomass and vegetation over a 13-year period in the Swedish sub-Arctic. AMBIO 40: 672–682.CrossRefGoogle Scholar
  20. Hickler, T., K. Vohland, J. Feehan, P.A. Miller, S. Fronzek, T. Giesecke, I. Kuehn, T. Carter, B. Smith, and M. Sykes. 2012. Projecting tree species-based climate-driven changes in European potential natural vegetation with a generalized dynamic vegetation model. Global Ecology and Biogeography 21: 50–63.CrossRefGoogle Scholar
  21. Houldcroft, C.J., W.M.F. Grey, M. Barnsley, C.M. Taylor, S.O. Los, and P.R.J. North. 2009. New vegetation albedo parameters and global fields of soil background albedo derived from MODIS for use in a climate model. Journal of Hydrometeorology 10: 183–198.CrossRefGoogle Scholar
  22. Huston, M.A., and S. Wolverton. 2009. The global distribution of net primary production: Resolving the paradox. Ecological Monographs 79: 343–377.CrossRefGoogle Scholar
  23. Jia, G.J., H.E. Epstein, and D.A. Walker. 2003 Greening of Arctic Alaska, 1981–2001. Geophysical Research Letters 30: 2067.CrossRefGoogle Scholar
  24. Kaplan, J.O., N.H. Bigelow, I.C. Prentice, S.P. Harrison, P.J. Bartlein, T.R. Christensen, W. Cramer, N.V. Matveyeva, et al. 2003. Climate change and Arctic ecosystems: 2. Modeling, paleodata-model comparisons, and future projections. Journal of Geophysical Research 108. doi: 10.1029/2002JD002559.
  25. Koven, C.D., B. Ringeval, P. Friedlingstein, P. Ciais, P. Cadule, D. Khvorostyanov, G. Krinner, and C. Tarnocai. 2011. Permafrost carbon-climate feedbacks accelerate global warming. Proceedings of the National Academy of Science 108: 14769–14774.CrossRefGoogle Scholar
  26. Kullman, L. 2002. Rapid recent range-margin rise of tree and shrub species in the Swedish Scandes. Journal of Ecology 90: 68–77.CrossRefGoogle Scholar
  27. Lucht, W., I.C. Prentice, R.B. Myneni, S. Sitch, P. Friedlingstein, W. Cramer, P. Bousquet, W. Buermann, and B. Smith. 2002. Climatic control of the high-latitude vegetation greening trend and pinatubo effect. Science 296: 1687–1689.CrossRefGoogle Scholar
  28. Matthes, H., A. Rinke, P.A. Miller, P. Kuhry, K. Dethloff, and A. Wolf. 2012. Sensitivity of high-resolution Arctic regional climate model projections to different implementations of land surface processes. Climatic Change 111: 197–214.CrossRefGoogle Scholar
  29. Matthews, E., and I. Fung. 1987. Methane emission from natural wetlands: Global distribution, area, and environmental characteristics of sources. Global Biogeochemical Cycles 1: 61–86.CrossRefGoogle Scholar
  30. McBean, G.A., G. Alekseev, D. Chen, E. Forland, J. Fyfe, P. Groisman, H. Melling, R. Vose, et al. 2005. Arctic climate past and present. In ACIA—Arctic Climate Impact Assessment, 22–60. New York: Cambridge University Press.Google Scholar
  31. McGuire, A.D., T.R. Christensen, D. Hayes, A. Heroult, E. Euskirchen, J.S. Kimball, C. Koven, P. Lafleur, et al. 2012. An assessment of the carbon balance of arctic tundra: Comparisons among observations, process models, and atmospheric inversions. Biogeosciences Discussions 9: 4543–4594.CrossRefGoogle Scholar
  32. Michelsen, A., S. Jonasson, D. Sleep, M. Havström, and T.V. Callaghan. 1996. Shoot biomass, δ13C, nitrogen and chlorophyll responses of two Arctic dwarf shrubs to in situ shading, nutrient application and warming simulating climatic change. Oecologia 105: 1–12.CrossRefGoogle Scholar
  33. Mitchell, T.D., and P.D. Jones. 2005. An improved method of constructing a database of monthly climate observations and associated high-resolution grids. International Journal of Climatology 25: 693–712.CrossRefGoogle Scholar
  34. Olsrud, M., B.Å. Carlsson, B.M. Svensson, A. Michelsen, and J.M. Melillo. 2010. Responses of fungal root colonization, plant cover and leaf nutrients to long-term exposure to elevated atmospheric CO2 and warming in a subarctic birch forest understorey. Global Change Biology 16: 1820–1829.CrossRefGoogle Scholar
  35. ORNL-DAAC. 2011. MODIS subsetted land products, Collection 5. http://daac.ornl.gov/MODIS/modis.html. Oak Ridge, Tennessee: ORNL-DAAC. Accessed 7 April 2011.
  36. Piao, S., X. Wang, P. Ciais, B. Zhu, T. Wang, and J. Liu. 2011. Changes in satellite-derived vegetation growth trend in temperate and boreal Eurasia from 1982–2006. Global Change Biology 17: 3228–3239.CrossRefGoogle Scholar
  37. Post, E., M.C. Forchhammer, S. Bret-Harte, T.V. Callaghan, T.R. Christensen, B. Elberling, A.D. Fox, O. Gilg, et al. 2009. Ecological dynamics across the Arctic associated with recent climate change. Science 325: 1355–1358.CrossRefGoogle Scholar
  38. Roberts, A., J. Cassano, R. Döscher, L. Hinzman, M. Holland, H. Mitsudera, A. Sumi, and J.E. Walsh. 2010. A science plan for regional Arctic System Modelling. International Arctic Research Center Technical Papers 10-0001. Fairbanks, Alaska: IARC, University of Alaska Fairbanks.Google Scholar
  39. Rundqvist, S., H. Hedenås, A. Sundström, U. Emanuelsson, H. Eriksson, C. Jonasson, and T.V. Callaghan. 2011. Tree and shrub expansion over the past 34 years at the tree-line near Abisko, Sweden. AMBIO 40: 683–692.CrossRefGoogle Scholar
  40. Smith, B., A. Aasa, R. Ahas, T. Blenckner, T.V. Callaghan, J. de Chazal, C. Humborg, A.M. Jönsson, A.M., et al. 2008a. Climate-related change in terrestrial and freshwater ecosystems. In Assessment of Climate Change for the Baltic Sea Basin, 221–308. Berlin: Springer.Google Scholar
  41. Smith, B., W. Knorr, J.-L. Widlowski, B. Pinty, and N. Gobron. 2008b. Combining remote sensing data with process modelling to monitor boreal conifer forest carbon balances. Forest Ecology and Management 255: 3985–3994.CrossRefGoogle Scholar
  42. Smith, B., I.C. Prentice, and M.T. Sykes. 2001. Representation of vegetation dynamics in modelling of terrestrial ecosystems: comparing two contrasting approaches within European climate space. Global Ecology and Biogeography 10: 621–637.CrossRefGoogle Scholar
  43. Sonesson, M., and J. Hoogesteger. 1983. Recent treeline dynamics (Betula pubescens Ehrh. ssp. tortuosa (ledeb.) Nyman) in northern Sweden. Nordicana 47: 47–54.Google Scholar
  44. Swann, A.L., I.Y. Fung, S. Levis, G.B. Bonan, and S.C. Doney. 2010. Changes in Arctic vegetation amplify high-latitude warming through the greenhouse effect. Proceedings of the National Academy of Sciences of the United States of America 107: 1295–1300.CrossRefGoogle Scholar
  45. Tape, K., M. Sturm, and C. Racine. 2006. The evidence for shrub expansion in Northern Alaska and the Pan-Arctic. Global Change Biology 12: 686–702.CrossRefGoogle Scholar
  46. Tømmervik, H., B. Johansen, I. Tombre, D. Thannheiser, K.A. Høgda, E. Gaare, and F.E. Wielgolaski. 2004. Vegetation changes in the nordic mountain birch forest: the influence of grazing and climate change. Arctic, Antarctic, and Alpine Research 36: 323–332.CrossRefGoogle Scholar
  47. Tucker, C.J., D.A. Slayback, J.E. Pinzon, S.O. Los, R.B. Myneni, and M.G. Taylor. 2001. Higher northern latitude normalized difference vegetation index and growing season trends from 1982 to 1999. International Journal of Biometeorology 45: 184–190.CrossRefGoogle Scholar
  48. Van Bogaert, R., K. Haneca, J. Hoogesteger, C. Jonasson, M. De Dapper, and T.V. Callaghan. 2011. A century of tree line changes in sub-Arctic Sweden shows local and regional variability and only a minor influence of 20th century climate warming. Journal of Biogeography 38: 907–921.CrossRefGoogle Scholar
  49. Van Bogaert, R., C. Jonasson, M. De Dapper, and T.V. Callaghan. 2010. Range expansion of thermophilic aspen (Populus tremula L.) in the Swedish Subarctic. Arctic, Antarctic, and Alpine Research 42: 362–375.CrossRefGoogle Scholar
  50. Walker, D.A., M.K. Raynolds, F.J.A. Daniëls, E. Einarsson, A. Elvebakk, W.A. Gould, A.E. Katenin, S.S. Kholod, et al. 2005. The circumpolar Arctic vegetation map. Journal of Vegetation Science 16: 267–282.CrossRefGoogle Scholar
  51. Walker, M.D., C.H. Wahren, R.D. Hollister, G.H.R. Henry, L.E. Ahlquist, J.M. Alatalo, M.S. Bret-Harte, M.P. Calef, et al. 2006. Plant community responses to experimental warming across the tundra biome. Proceedings of the National Academy of Sciences of the United States of America 103: 1342–1346.CrossRefGoogle Scholar
  52. Wania, R., I. Ross, and I.C. Prentice. 2009. Integrating peatlands and permafrost into a dynamic global vegetation model: I. Evaluation and sensitivity of physical land surface processes. Global Biogeochemical Cycles 23: GB3014. doi: 10.1029/2008GB003412.CrossRefGoogle Scholar
  53. Wolf, A., T.V. Callaghan, and K. Larson. 2008a. Future changes in vegetation and ecosystem function of the Barents Region. Climatic Change 87: 51–73.CrossRefGoogle Scholar
  54. Wolf, A., M.V. Kozlov, and T.V. Callaghan. 2008b. Impact of non-outbreak insect damage on vegetation in northern Europe will be greater than expected during a changing climate. Climatic Change 87: 91–106.CrossRefGoogle Scholar
  55. Wramneby, A., B. Smith, and P. Samuelsson. 2010. Hotspots of vegetation-climate feedbacks under future greenhouse forcing in Europe. Journal of Geophysical Research 115: D21119. doi: 10.1029/2010JD014307.CrossRefGoogle Scholar

Copyright information

© Royal Swedish Academy of Sciences 2012

Authors and Affiliations

  1. 1.Department of Physical Geography and Ecosystem ScienceLund UniversityLundSweden

Personalised recommendations